首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
以3种白色矿物粉体[颗粒状CaCO3、BaSO4,片层状滑石(talc)]为填料,聚丙烯(PP)为基体树脂,通过熔融共混法制备PP复合材料,研究3种矿物粉体在不同含量时对PP复合材料的力学性能、流动性能与断裂形貌的影响规律,并采用Turcasanyi半经验公式计算了矿物填料与PP复合材料力学性能界面相互作用。结果表明,3种矿物粉体的加入均降低了PP的拉伸强度,PP/talc复合材料的拉伸强度明显高于PP/CaCO3 与PP/BaSO4,且talc的加入明显增强了PP的拉伸模量与弯曲模量;CaCO3 与BaSO4的加入使复合材料弯曲强度降低,talc的加入使复合材料弯曲强度提高;CaCO3对PP断裂伸长率与悬臂梁缺口冲击强度的提升最为明显;talc的加入使复合材料流动性能得到提高,而颗粒状的CaCO3与BaSO4的加入对加工性能影响较小;CaCO3 与BaSO4在PP中均存在一定团聚现象,且与PP相容性较差,存在明显界面缺陷;talc与PP间界面较模糊,二者之间有较强的黏结作用。  相似文献   

2.
采用硅烷偶联剂对纳米CaCO3进行表面改性,将表面改性CaCO3与热塑性弹性体(TPE)、聚丙烯(PP)熔融共混,制备了PP/TPE/表面改性CaCO3复合材料,表征并研究了其结构与性能。结果表明:加入表面改性CaCO3使复合材料的储能模量、损耗模量和复数黏度增加。表面改性CaCO3含量为6%(w)时复合材料的拉伸强度、弯曲强度和冲击强度均最大,分别为29.85 MPa,25.67 MPa,43.79 kJ/m2;与纯PP相比,复合材料的拉伸强度、弯曲强度和冲击强度分别提高了6.5%,11.5%,3.0%。表面改性CaCO3含量为10%(w)时,终止分解温度从466.9℃增加到473.7℃,分解速率最快时的温度从455.9℃增加到460.5℃,对体系的热解稳定性有一定的改善。  相似文献   

3.
研究了纳米碳酸钙(CaCO3)和无卤阻燃剂六苯氧基环三磷腈(POP)对聚丙烯(PP)/氢氧化镁(Mg(OH)2)复合材料力学性能和燃烧性能的影响。结果表明:保持无机粒子总量90份,随着纳米 CaCO3含量的增加,材料的力学性能先提高后降低,在其含量为40份时达到最佳值。POP 的加入可减少 Mg(OH)2用量,同时可进一步提高 PP/Mg(OH)2复合材料的力学性能和阻燃性能,当 POP 用量为8份时,复合材料的断裂伸长率、拉伸强度、冲击强度和氧指数分别可达264.76%、22.34 MPa、48.65 kJ/m~2、28.2%。  相似文献   

4.
将经过表面处理的纳米CaCO3分别用两种方法制备成母粒并与PP复合,制备成PP/CaCO3与PP/PP-g-GMA/CaCO3纳米复合材料。对纳米复合材料的力学性能和结晶行为进行了测试。结果表明,纳米碳酸钙对PP的β晶的形成具有诱导作用,并且在PP/PP-g-GMA/CaCO3纳米复合材料中,纳米CaCO3含量在低于20%时,可同时解决增韧和增强的问题。  相似文献   

5.
以双螺杆挤出机制备了共聚PP/CaCO3高填充复合材料,表征了CaCO3粒子在基体中的分散行为,并对共聚PP及复合体系的流变行为进行了研究。结果表明:纯共聚PP的熔体呈现出明显的假塑性流体行为,提高熔体温度,熔体的弹性有所增强;高填充共聚PP/CaCO3复合体系及高填充共聚PP/HDPE/CaCO3复合体系的熔体的剪切行为与纯共聚PP的类似,高填充的CaCO3粒子仅对共聚熔体的表观粘度产生轻微影响;共聚PP中大量存在的CaCO3粒子,降低了熔体的假塑性行为;提高剪切速率是调节高填充共聚PP/HDPE/CaCO3合体系粘度的有效手段。  相似文献   

6.
罗帅帅  古卫乐  操未青  刘雷鹏  胡攀  田键 《精细化工》2023,40(8):1727-1733+1741
利用硬脂酸钠(NaSt)和油酸钠(NaOL)对文石型和方解石型两种CaCO3粉体进行表面改性,将改性的CaCO3粉体与聚二甲基硅氧烷(PDMS)共混,喷涂得到了CaCO3/PDMS基超疏水涂层。采用XRD、SEM、接触角测量仪对改性CaCO3粉体及超疏水涂层进行测试,考察了不同晶型CaCO3用量对涂层疏水性能的影响,并对超疏水涂层的自清洁性及稳定性进行了评价。结果表明,当NaSt和NaOL用量分别为反应体系CaCO3理论生成质量的5%时,CaCO3粉体改性效果最好,所制备的CaCO3/PDMS涂层疏水性最佳。当CaCO3和PDMS质量比为1.5∶1时,CaCO3/PDMS涂层接触角>150°,具有超疏水性。玻璃板涂层表面的亚甲基蓝污染物可以完全随着液滴被冲走,没有残留,且经过500 m L流速5 m/s的水流冲击,接触角仍达140°以上。  相似文献   

7.
分别以Y(NO3)3·6H2O、CaCO3为钇源和钙源,以CO(NH2)2为燃料,采用低温自蔓延燃烧合成(LCS)法制备复合Y2O3包覆CaO粉体,合成粉体经煅烧、压制、干燥、烧结后制备出复合CaO-Y2O3材料,考察了钙钇摩尔比对复合材料结构及性能的影响。结果表明:所制备的复合粉体具有良好的包覆性。钙钇摩尔比为2∶1时材料物理性能最佳,其相对密度达到96.56%,显气孔率为1.32%,常温耐压强度为270.0 MPa,热震循环5次后试样残余强度保持率为88.39%,大气环境下21 d后的水化增重率为0.75%。  相似文献   

8.
采用聚乙烯(PE)、聚烯烃弹性体(POE)和碳酸钙(CaCO3)共混制备了聚合物类颗粒流道调整剂,考察了不同CaCO3含量和PE与POE比例条件下的PE/CaCO3、POE/CaCO3、PE/POE/CaCO3三类颗粒流道调整剂的密度、熔点熔程、黏结性能、力学性能差异。结果表明,颗粒流道调整剂的密度随CaCO3含量增加而增大,实现了1.05~1.20 g/cm3范围内可调;结合PE的熔融特性和POE的黏结性能,实现了黏结性能由PE/CaCO3共混物熔融黏结转为POE/CaCO3、PE/POE/CaCO3体系软化黏结的可控调节;通过调节CaCO3含量、PE与POE比例可以改变流道调整剂颗粒的熔点熔程和拉伸强度,相同CaCO3含量时PE/POE/CaCO3体系颗粒的拉伸强度随PE含量升高而增大。  相似文献   

9.
采用碳酸钙(CaCO3)对聚己二酸-对苯二甲酸丁二酯(PBAT)/聚乳酸(PLA)复合材料进行改性,并通过吹膜法成功制备出PBAT/PLA/CaCO3共混薄膜,并采用热重、差示扫描量热、流变性能和力学性能等一系列测试研究了CaCO3对PBAT/PLA复合材料的影响。结果表明,CaCO3的加入大大增加了PBAT/PLA复合材料的热稳定性,降低了PBAT/PLA复合材料的结晶度,同时CaCO3对PBAT/PLA复合材料起了显著的增强作用,CaCO3使PBAT/PLA薄膜在力学性能上有了很好的提高,横向和纵向拉伸强度分别从21.06 MPa和24.35 MPa提高到了24.3 MPa和28.7 MPa,硬度达到了51。CaCO3的加入使PBAT/PLA复合材料的复数黏度、储能模量和损耗模量都有一定程度的提高,进一步证明了CaCO3提高了两相界面的结合强度。  相似文献   

10.
以聚对苯二甲酸己二酸丁二醇酯(PBAT)为基材,以改性碳酸钙(CaCO3)为填料,采用熔融共混吹膜方式制备PBAT/改性CaCO3复合材料,研究改性CaCO3对PBAT薄膜性能的影响。结果表明:改性CaCO3的加入提高复合材料的结晶温度、熔融温度以及结晶度。采用2%硅烷偶联剂和2%硬脂酸复配改性CaCO3,PBAT/改性CaCO3复合材料(M-4)结晶度最高且力学性能优异,横纵向拉伸强度分别为26.51 MPa和36.07 MPa;横纵向断裂伸长率分别为839.33%和462.44%;横纵向直角撕裂负荷分别为2.10和3.07;横纵向直角撕裂强度分别为101.40和136.01。2%铝酸酯和2%硬脂酸复配改性的CaCO3提升复合材料的水蒸气阻隔性能,复合材料的水蒸气透过率较纯PBAT降低40.09%,水蒸气透过系数降低47.54%。加入改性CaCO3,复合材料的储能模量、损耗模量和复数黏度均有所提高。  相似文献   

11.
将一定比例聚醚和异辛醇相混合,采用传统的Moor等反应方法制得了具有不同相对分子质量的聚醚基异辛基焦磷酸酯,再与钛酸异丙酯反应,获得异丙基三(聚醚基异辛基焦磷酰氧基)钛酸酯。经此偶联剂处理的CaCO3对于HDPE/CaCO3和PP/POE/CaCO3材料具有明显增韧、增强作用。对PVC/CPE/DOP/CaCO3材料也具有明显改善韧性的作用。经SEM测定表明,经此偶联剂处理的CaCO3与聚合物基体间的界面较模糊。偶联剂中聚醚取代基的相对分子质量和合成原料中聚醚与异辛醇的比例对材料增韧效果具有重要影响。  相似文献   

12.
采用自制的负载钛催化剂[TiCl4/MgCl2-Al(i-Bu)3],合成了1-丁烯-1-己烯共聚物(PBH)。用己烯摩尔含量为2%、7%、20%的PBH对PP进行共混,研究了共混物的力学性能;以己烯初始摩尔含量为30%的PBH作为CaCO3的载体,填充PP,并与未采用载体的CaCO3填充体系进行比较。结果表明:随着PBH含量的增加,在共混物拉伸强度、弯曲强度、硬度有一定下降的同时,冲击强度则明显提高,己烯摩尔含量大的PBH增韧改性PP的效果更好;以PBH作为载体的CaCO3,随着其含量的增加,共混物的冲击强度明显增大,而拉伸强度、弯曲强度、硬度却有一定程度的下降。与无PBH载体CaCO3填充PP的规律明显不同。  相似文献   

13.
采用一步法制备了具有不同界面性质的聚丙烯/碳酸钙(PP/CaCO_3)复合体系,考察了界面作用对复合材料性能的影响。结果表明,在只使用 CaCO_3的情况下,PP/CaCO_3复合材料的弯曲强度和热变形温度会提高,但拉伸强度和冲击强度则会有较大程度降低,且 CaCO_3含量越高对样品的弯曲强度、热变形温度、拉伸强度和冲击强度影响越大;用弹性体包覆 CaCO_3粒子,不但可以防止PP/CaCO_3复合材料的拉伸强度的进一步降低,而且可以提高其冲击强度;加入偶联剂和助偶联剂,有利于弹性体对 CaCO_3粒子的有效包覆,这种包覆是自发进行的,原子力显微镜结果验证了粒子的核壳结构。  相似文献   

14.
尼龙6、纳米碳酸钙共混改性PP的研究   总被引:1,自引:0,他引:1  
刘辉  丁会利  盛京 《塑料工业》2006,34(10):22-25
采用尼龙6(PA6)和纳米碳酸钙(CaCO3)共混改性聚丙烯(PP),研究了PA6和纳米CaCO3用量对改性PP力学性能的影响,并研究了PP-g-MAH和POE-g-MAH两种相容剂对体系的不同影响。结果表明,体系性能最佳的配比为PP/PA/CaCO3/POE-g-MAH=100/14/12/25(质量比),改性PP的冲击强度约为纯PP的780%,而弯曲和拉伸强度只比纯PP略有下降。  相似文献   

15.
SBS/CaCO3改性PP的研究   总被引:4,自引:0,他引:4  
采用SBS和CaCO_3对聚丙烯进行共混填充改性,得到综合性能良好且成本低廉的PP/SBS/CaCO_3三元复合材料。其缺口冲击强度比纯PP有较大程度的提高。本文还对PP/SBS/CaCO_3三元体系的物理机械性能与配比的关系进行了探讨。  相似文献   

16.
本文研究了CaCO3对聚丙烯/三元乙丙橡胶(EPDM)/苯乙烯-丁二烯-苯乙烯(SBS)和聚丙烯/聚烯烃(PO)的力学性能,热性能和流变性能的影响,结果表明,CaCO3的加入,提高了共混体系的冲击强度,获得性能较好的PP合金材料,可用于汽车保险杠。  相似文献   

17.
纳米氧化锌(ZnO)与聚丙烯(PP)通过熔融共挤制得了ZnO/PP纳米复合材料.研究了ZnO/PP纳米复合材料的力学、流变学性能与纳米ZnO添加量之间的关系;同时制备了ZnO/CaCO3/PP三元纳米复合材料并对其进行了机械性能和制备成本分析.结果表明,ZnO/PP纳米复合材料的熔体质量流动速率较纯PP有较大程度的提高;纳米CaCO3的加入不但可以降低生产成本,而且可以显著改善体系的冲击韧性;材料的拉伸破坏属于韧性断裂过程.  相似文献   

18.
用自制TiCl_4/MgCl_2-Al(i-Bu)_3催化体系,合成1-丁烯/1-己烯共聚物(PBH,1-己烯摩尔分数为30%),再以PBH作为CaCO_3的载体[m(CaCO_3)/m(PBH)为2]填充聚丙烯(PP)。与纯CaCO_3填充体系相比,有载体的CaCO_3填充PP的韧性明显增大,冲击强度提高2倍以上,断裂伸长率提高10倍以上,但刚性有所下降。PBH作为CaCO_3载体具有良好的应用前景。  相似文献   

19.
纳米CaCO3/EPR/PP复合材料的冲击性能研究   总被引:2,自引:2,他引:2  
采用双辊混炼和挤出制样的方法制备了纳米碳酸钙(CaCO3)/乙丙橡胶(EPR)/聚丙烯(PP)复合材料,研究了复合材料的冲击强度与试样放置时间的关系。结果表明,随着放置时间的增加,纳米CaCO3/EPR/PP复合材料的室温冲击强度提高,而未添加纳米CaCO3的EPR/PP复合材料的冲击强度则降低;纳米CaCO3用量为10phr试样,在放置一个月后,冲击强度达到50.3kJ/m2,比未添加纳米CaCO3的试样的冲击强度高86%。  相似文献   

20.
偶联剂处理超细CaCO3增韧HDPE研究   总被引:3,自引:0,他引:3  
用合成的异氰酸酯偶联剂,对超细碳酸钙(CaCO3)进行了表面处理,考察了处理后CaCO3对高密度聚乙烯(HDPE)的增韧效果。FTIR,SEM及力学性能测试等结果表明,异氰酸酯偶联剂在CaCO3表面产生了化学偶联作用,并且异氰酸酯偶联剂与钛酸酯偶联剂共用时有协同作用。在CaCO3临界质量分数为40%时,材料的冲击强度达到最大值43.2kJ/m^2,同时材料的刚性能够基本保持。随着CaCO3含量的变化,材料的熔体流动速率与冲击强度有着相似的变化规律,认为CaCO3粒子周围存在的塑性界面过渡区,是导致材料的熔体流动速率和冲击强度提高的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号