首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent characterization of multiple classes of functionalized azapeptides as effective covalent inhibitors of cysteine proteases prompted us to investigate O-acyl hydroxamates and their azapeptide analogues for use as activity-based probes (ABPs). We report here a new class of azaglycine-containing O-acylhydroxamates that form stable covalent adducts with target proteases. This allows them to be used as ABPs for papain family cysteine proteases. A second class of related analogues containing a novel O-acyl hydroxyurea warhead was found to function as covalent inhibitors of papain-like proteases. These inhibitors can be easily synthesized on solid support, which allows rapid optimization of compounds with improved selectivity and potency for a given target enzyme. We present here one such optimized inhibitor that showed selective inhibition of falcipain 1, a protease of the malaria-causing parasite, Plasmodium falciparum.  相似文献   

2.
The O-acetylation of the muramic acid residues in peptidoglycan (PG) is a modification that protects the bacteria from lysis due to the action of lysozyme. In Gram-negative bacteria, deacetylation is required to allow lytic transglycosylases to promote PG cleavage during cell growth and division. This deacetylation is catalyzed by O-acetylpeptidoglycan esterase (Ape) which is a serine esterase and employs covalent catalysis via a serine-linked acyl enzyme intermediate. Loss of Ape activity affects the size and shape of bacteria and dramatically reduces virulence. In this work, we report the first rationally designed aldehyde-based inhibitors of Ape from Campylobacter jejuni. The most potent of these acts as a competitive inhibitor with a Ki value of 13 μM. We suspect that the inhibitors are forming adducts with the active site serine that closely mimic the tetrahedral intermediate of the normal catalytic cycle. Support for this notion is found in the observation that reduction of the aldehyde to an alcohol effectively abolishes the inhibition.  相似文献   

3.
Common methodologies of computer-assisted drug design focus on noncovalent enzyme-ligand interactions. We introduced enzyme isoselective inhibition trend analysis as a tool for the expert analysis of covalent reversible inhibitors. The methodology is applied to predict the binding affinities of a series of transition-state analogue inhibitors of medicinally important serine and cysteine hydrolases. These inhibitors are isoselective: they have identical noncovalent recognition fragments (RS) and different reactive chemical fragments (CS). Furthermore, it is possible to predict the binding affinities of a series of isoselective inhibitors toward a prototype enzyme and to extrapolate the data to a target medicinally important enzyme of the same family. Rational design of CS fragments followed by conventional RS optimization could be used as a novel approach to drug design.  相似文献   

4.
Herein we report a microscale parallel synthetic approach allowing for rapid access to libraries of N-acylated aminotriazoles and screening of their inhibitory activity against factor XIIa (FXIIa) and thrombin, which are targets for antithrombotic drugs. This approach, in combination with post-screening structure optimization, yielded a potent 7 nM inhibitor of FXIIa and a 25 nM thrombin inhibitor; both compounds showed no inhibition of the other tested serine proteases. Selected N-acylated aminotriazoles exhibited anticoagulant properties in vitro influencing the intrinsic blood coagulation pathway, but not extrinsic coagulation. Mechanistic studies of FXIIa inhibition suggested that synthesized N-acylated aminotriazoles are covalent inhibitors of FXIIa. These synthesized compounds may serve as a promising starting point for the development of novel antithrombotic drugs.  相似文献   

5.
A hybrid approach was applied for the design of an inhibitor of trypsin‐like serine proteases. Compound 16 [(R,R)‐ and (R,S)‐diphenyl (4‐(1‐(4‐amidinobenzylamino)‐1‐oxo‐3‐phenylpropan‐2‐ylcarbamoyl)phenylamino)(4‐amidinophenyl)methylphosphonate hydrochloride], prepared in a convergent synthetic procedure, possesses a phosphonate warhead prone to react with the active site serine residue in a covalent, irreversible manner. Each of the two benzamidine moieties of 16 can potentially be accommodated in the S1 pocket of the target enzyme, but only the benzamidine close to the phosphonate group would then promote an irreversible interaction. The Janus‐faced inhibitor 16 was evaluated against several serine proteases and caused a pronounced inactivation of human thrombin with a second‐order rate constant (kinac/Ki) of 59 500 M ?1 s?1. With human matriptase, 16 showed preference for a reversible mode of inhibition (IC50=2.6 μM ) as indicated by linear progress curves and enzyme reactivation.  相似文献   

6.
Two series of macrocyclic plasmin inhibitors with a C-terminal benzylamine group were synthesized. The substitution of the N-terminal phenylsulfonyl group of a previously described inhibitor provided two analogues with sub-nanomolar inhibition constants. Both compounds possess a high selectivity against all other tested trypsin-like serine proteases. Furthermore, a new approach was used to selectively introduce asymmetric linker segments. Two of these compounds inhibit plasmin with Ki values close to 2 nM. For the first time, four crystal structures of these macrocyclic inhibitors could be determined in complex with a Ser195Ala microplasmin mutant. The macrocyclic core segment of the inhibitors binds to the open active site of plasmin without any steric hindrance. This binding mode is incompatible with other trypsin-like serine proteases containing a sterically demanding 99-hairpin loop. The crystal structures obtained experimentally explain the excellent selectivity of this inhibitor type as previously hypothesized.  相似文献   

7.
Although C C bond hydrolases are distributed widely in Nature, they has as yet have received only limited attention in the area of biocatalysis compared to their counterpart the C‐heteroatom hydrolases, such as lipases and proteases. However, the substrate range of C C hydrolases, and their non‐dependence on cofactors, suggest that these enzymes may have considerable potential for applications in synthesis. In addition, hydrolases such as the β‐diketone hydrolase from Rhodococcus (OCH) are known, that catalyse the formation of interesting chiral intermediates. Further enzymes, such as kynureninase and a meta‐cleavage product hydrolase (MhpC), are able to catalyse carbon‐carbon bond formation, suggesting wider applications in biocatalysis than previously envisaged. In this review, the distribution, catalytic characteristics and applications of C C hydrolases are described, with a view to assessing their potentialfor use in biocatalytic processes in the future.  相似文献   

8.
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes and also play pivotal roles in the biology of parasites. Inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas disease, and leishmaniasis. Inspired by the in vivo antiparasitic activity of the vinylsulfone‐based cysteine protease inhibitors, a series of α‐ketoheterocycles were developed as reversible inhibitors of a recombinant L. mexicana cysteine protease, CPB2.8. Three isoxazoles and especially one oxadiazole compound are potent reversible inhibitors of CPB2.8; however, in vitro whole‐organism screening against a panel of protozoan parasites did not fully correlate with the observed inhibition of the cysteine protease.  相似文献   

9.
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 % reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.  相似文献   

10.
Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PLpro) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide ( 2 b ), which is known to bind into the S3 and S4 pockets of the SARS-CoV PLpro. Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS-CoV-2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS-CoV PLpro are valuable starting points for the development of new pan-coronaviral inhibitors.  相似文献   

11.
Quinone methide (QM) chemistry is widely applied including in enzyme inhibitors. Typically, enzyme-mediated bond breaking releases a phenol product that rearranges into an electrophilic QM that in turn covalently modifies protein side chains. However, the factors that govern the reactivity of QM-based inhibitors and their mode of inhibition have not been systematically explored. Foremost, enzyme inactivation might occur in cis, whereby a QM molecule inactivates the very same enzyme molecule that released it, or by trans if the released QMs diffuse away and inactivate other enzyme molecules. We examined QM-based inhibitors for enzymes exhibiting phosphoester hydrolase activity. We tested different phenolic substituents and benzylic leaving groups, thereby modulating the rates of enzymatic hydrolysis, phenolate-to-QM rearrangement, and the electrophilicity of the resulting QM. By developing assays that distinguish between cis and trans inhibition, we have identified certain combinations of leaving groups and phenyl substituents that lead to inhibition in the cis mode, while other combinations gave trans inhibition. Our results suggest that cis-acting QM-based substrates could be used as activity-based probes to identify various phospho- and phosphono-ester hydrolases, and potentially other hydrolases.  相似文献   

12.
Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure–activity relationship study of a small library of ω‐phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5‐bis(trifluoromethyl)phenyl group and the aromatic character of the ω‐phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so‐optimized compounds 2 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(3‐(1,3‐dioxoisoindolin‐2‐yl)propyl)urea] and 21 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(4‐(1,3‐dioxoisoindolin‐2‐yl)butyl)urea] exhibited dissociation constants (Ki) of 1–19 μm on the two CEases and showed either a competitive ( 2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases—monoacylglycerol lipase and fatty acid amide hydrolase—were inhibited by ω‐phthalimidoalkyl aryl ureas to a lesser extent.  相似文献   

13.
The two SARS-CoV-2 proteases, i. e. the main protease (Mpro) and the papain-like protease (PLpro), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro. Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro, highlighting the potential for dual PLpro/Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.  相似文献   

14.
Intramembrane serine proteases (rhomboid proteases) are involved in a variety of biological processes and are implicated in several diseases. Here, we report 4-oxo-β-lactams as a novel scaffold for inhibition of rhomboids. We show that they covalently react with the active site and that the covalent bond is sufficiently stable for detection of the covalent rhomboid-lactam complex. 4-Oxo-β-lactams may therefore find future use as both inhibitors and activity-based probes for rhomboid proteases.  相似文献   

15.
The fatty acid ethanolamides are a class of signaling lipids that include agonists at cannabinoid and α type peroxisome proliferator‐activated receptors (PPARα). In the brain, these compounds are primarily hydrolyzed by the intracellular serine enzyme fatty acid amide hydrolase (FAAH). O‐aryl carbamate FAAH inhibitors such as URB597 are being evaluated clinically for the treatment of pain and anxiety, but interactions with carboxylesterases in liver might limit their usefulness. Here we explore two strategies aimed at overcoming this limitation. Lipophilic N‐terminal substitutions, which enhance FAAH recognition, yield potent inhibitors but render such compounds susceptible to attack by broad‐spectrum hydrolases and inactive in vivo. By contrast, polar electron‐donating O‐aryl substituents, which decrease carbamate reactivity, yield compounds, such as URB694, that are highly potent FAAH inhibitors in vivo and less reactive with off‐target carboxylesterases. The results suggest that an approach balancing inhibitor reactivity with target recognition produces FAAH inhibitors that display significantly improved drug‐likeness.  相似文献   

16.
Both an active enzyme conformation and stabilization of tetrahedraltransition states are essential for the catalysis of ester bondhydrolysis by lipases. X-ray structural data and results fromsite-directed mutagenesis experiments with proteases have beenused as a basis for predictions of amino acid residues likelyto have key functions in lipases. The gene encoding a lipasefrom Rhizopus oryzae was cloned and expressed in Escherichiacoli. Site-directed mutagenesis of this gene was used to testthe validity of computer-aided predictions of the functionalroles of specific amino acids in this enzyme. Examination ofthe kinetic constants of the Rhizopus oryzae lipase variantsallowed us to identify amino acid residues which are directlyinvolved in the catalytic reaction or which stabilize the activegeometry of the enzyme. The combination of these results withmolecular mechanics simulations, based on a homology-derivedstructural model, provided new information about structure-functionrelationships. The interpretation of the data is consistentwith results obtained with other hydrolases, such as proteases.  相似文献   

17.
Covalent catalytic intermediates provide valuable information for revealing the catalytic mechanism, probing the enzyme activity and identifying substrate specificity. However, naturally formed covalent intermediates are too rapidly degraded for general biological studies. In order to capture transient covalent intermediates, a variety of chemical strategies have been developed over decades to extend the half-life of the enzyme-substrate intermediates (or close analogues) required for the downstream structural and functional studies. This review summarizes three general mechanism-based strategies for trapping covalent catalytic intermediates. In particular, enzyme mutant-based approaches, especially the introduction of genetically encoded 2,3-diaminopropionic acid to replace the catalytic cysteine/serine in proteases for acyl-enzyme intermediate trapping are described. In addition, the applications of trapped intermediates in structural, functional and protein labeling studies are presented, and the potential new directions of using enzyme substrate traps are discussed at the end of the review.  相似文献   

18.
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are two serine proteases that contribute to initiating fibrinolysis by activating plasminogen. uPA is also an important tumour-associated protease due to its role in extracellular matrix remodelling. Overexpression of uPA has been identified in several different cancers and uPA inhibition has been reported as a promising therapeutic strategy. Although several peptide-based uPA inhibitors have been developed, the extent to which uPA tolerates different tetrapeptide sequences that span the P1–P4 positions remains to be thoroughly explored. In this study, we screened a sequence-defined peptide aldehyde library against uPA and tPA. Preferred sequences from the library screen yielded potent inhibitors for uPA, led by Ac-GTAR-H (Ki=18 nm ), but not for tPA. Additionally, synthetic peptide substrates corresponding to preferred inhibitor sequences were cleaved with high catalytic efficiency by uPA but not by tPA. These findings provide new insights into the binding specificity of uPA and tPA and the relative activity of tetrapeptide inhibitors and substrates against these enzymes.  相似文献   

19.
A series of new substrate analogue inhibitors of the WNV NS2B–NS3 protease containing decarboxylated arginine mimetics at the P1 position was developed. Among the various analogues, trans‐(4‐guanidino)cyclohexylmethylamide (GCMA) was identified as the most suitable P1 residue. In combination with dichloro‐substituted phenylacetyl groups at the P4 position, three inhibitors with inhibition constants of <0.2 μM were obtained. These GCMA inhibitors have a better selectivity profile than the previously described agmatine analogues, and possess negligible affinity for the trypsin‐like serine proteases thrombin, factor Xa, and matriptase. A crystal structure in complex with the WNV protease was determined for one of the most potent inhibitors, 3,4‐dichlorophenylacetyl‐Lys‐Lys‐GCMA (Ki=0.13 μM ). The inhibitor adopts a horseshoe‐like conformation, most likely due to a hydrophobic contact between the P4 phenyl ring and the P1 cyclohexyl group, which is further stabilized by an intramolecular hydrogen bond between the P1 guanidino group and the P4 carbonyl oxygen atom. These inhibitors are stable, readily accessible, and have a noncovalent binding mode. Therefore, they may serve as suitable lead structures for further development.  相似文献   

20.
A conceptually new cooperative catalytic system via a synergistic combination of aldehyde and copper catalysis has been established based on systemic mechanistic studies. This new cooperative catalysis has been successfully applied in the direct aerobic oxidative C H amination of azoles at room temperature, which was previously realized under harsh conditions. Mechanistic studies including isotopic labeling experiments and kinetic isotope effect (KIE) experiments support a reaction pathway that involves formation of an aminal, hydrolysis of the aminal to generate the copper‐amide species, subsequent C H amination and re‐oxidation of copper(I) to copper(II) by oxygen. It not only provides an efficient method to realize the oxidative C H amination of benzoxazoles with free amines at room temperature, but also paves the way for establishing new C N bond formation reactions by using this efficient cooperative catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号