首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
K.F. Khaled 《Electrochimica acta》2003,48(17):2493-2503
The inhibitive action of some benzimidazole derivatives namely 2-aminobenzimidazole (AB), 2-(2-pyridyl)benzimidazole (PB), 2-aminomethylbenzimidazole (MB), 2-hydroxybenzimidazole (HB) and benzimidazole (B), against the corrosion of iron (99.9999%) in solutions of hydrochloric acid has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). At inhibitor concentration range (10−3-10−2 M) in 1 M acid, the results showed that these compounds suppressed both cathodic and anodic processes of iron corrosion in 1 M HCl by adsorption on the iron surface according to Langmuir adsorption isotherm. The efficiency of these inhibitors increases in the order AB>PB>MB>HB>B. Both potentiodynamic and EIS measurements reveal that these compounds inhibit the iron corrosion in 1 M HCl and that the efficiency increases with increasing of the inhibitor concentration. Data obtained from EIS were analyzed to model the corrosion inhibition process through equivalent circuit. A correlation between the highest occupied molecular orbital EHOMO and inhibition efficiencies was sought.  相似文献   

2.
Aniline derivatives, namely 2-chloroaniline, 2-fluoroaniline, 2-aminophenetole, 2-ethylaniline, o-aminoanisole and o-toluidine were studied for their possible use as copper corrosion inhibitors in 0.5 M HCl. These compounds were studied in concentrations from 10−3 to 10−4 M at temperature 298 K. Effectiveness of these compounds was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. These compounds inhibit the corrosion of copper in HCl solution to some extent. In each case, inhibition efficiencies increase with increasing concentration. A suggested model for the interface as well as some kinetic data is presented. These inhibitors obey the Temkin adsorption isotherm. A correlation between structure and inhibition efficiencies is suggested.  相似文献   

3.
Three new gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethylalkyl ammonium bromide) were synthesised and tested as corrosion inhibitors of iron in hydrochloric acid medium using gravimetric, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. Results obtained show that the surfactants studied are good cathodic inhibitors and act on the cathodic hydrogen reaction without modifying its mechanism. EIS results show that the changes in the impedance parameters (RT and Cdl) with concentration of surfactants studied is indicative of the adsorption of molecules of surfactant leading to the formation of a protective layer on the surface of iron. The effect of the temperature on the iron corrosion in both 1 M HCl and 1 M HCl with addition of various concentrations of 1,2-ethane bis-(dimethyl tetradecyl ammonium bromide) in the range of temperature 20–60 °C was studied. The associated apparent activation corrosion energy has been determined.  相似文献   

4.
The inhibition of pure iron in 1 M HCl by new synthesised pyridazine compounds has been studied by weight loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. The results obtained reveal that these compounds are efficient inhibitors. The inhibition efficiency increases with the increase of inhibitor concentration and reached 98% at 10−4 M for 5-benzyl-6-methyl pyridazine-3-thione. Potentiodynamic polarisation studies clearly reveal that the presence of pyridazines does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. The temperature effect on the corrosion behaviour of pure iron in 1 M HCl without and with the pyridazines at 10−4 M was studied in the temperature range from 298 to 353 K. EIS measurements show that the increase of the transfer resistance with the inhibitor concentration.  相似文献   

5.
The use of Silybum marianum leaves extract as a 304 stainless steel corrosion inhibitor in 1.0 M HCl solution was investigated by weight loss measurements, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. Potentiodynamic polarization curves indicated that S. marianum extract behaves as mixed-type inhibitor. The adsorption of the extract constituents was further discussed in view of Langmuir adsorption isotherm. The effect of temperature on the inhibition efficiency was studied. Quantum chemical parameters were also calculated, which provided reasonable theoretical explanation for the adsorption and inhibition behavior of S. marianum extract on the 304 stainless steel.  相似文献   

6.
In order to enhance the solubility of chitosan in water and its corrosion inhibition performance on Q235 steel in 1 M HCl solution, N‐vanillyl‐O‐2′‐hydroxypropyltrimethylammonium chloride chitosan (VHTC) was synthesized. The structure of VHTC was characterized by FT‐IR and 1H‐NMR spectroscopy. The corrosion inhibition performance of VHTC on Q235 steel in 1 M HCl solution was studied by weight loss, polarization, electrochemical impedance spectroscopy (EIS) and stereo microscope analysis. Experimental results indicate that VHTC shows better inhibition efficiency compared to chitosan. When the concentration of VHTC increases to 200 mg L?1, the inhibition efficiency reaches 90 %, which is almost equal to the conventional corrosion inhibitors (e.g., imidazoline). The polarization study demonstrates that VHTC is a mixed‐type inhibitor caused by a geometrical blanketing effect. The charge transfer resistance is proportional to the inhibitor concentration as revealed by the EIS results, indicating that the protective film on the Q235 steel surface is formed by adsorption of the inhibitor molecules. The inhibition efficiency of VHTC achieves the maximum value within 24 h when the concentration of VHTC is 200 mg L?1. The morphology observation of the corroded steel surface indicates that the corrosion of Q235 steel in 1 M HCl solution is significantly inhibited after introducing VHTC into the acidic solution.  相似文献   

7.
The inhibition of corrosion of steel by two P-containing compounds, sodium methyldodecyl phosphonate and sodium methyl (11-smethacryloyloxyundecyl) phosphonate, in hydrochloric acid has been investigated at various temperatures using electrochemical techniques (impedance spectroscopy (EIS), potentiodynamic polarization) and weight loss measurements. Inhibition efficiency (E%) increased with phosphonate concentration. Adsorption of inhibitors on the steel surface in 1 M HCl follows the Langmuir isotherm model. EIS measurements showed that the dissolution process of steel occurred under activation control. Polarization curves indicated that inhibitors tested acted as cathodic inhibitors. The temperature effect on the corrosion behavior of steel in 1 M HCl without and with the inhibitor was studied in the temperature range from 313 to 353 K. The adsorption free energy and activation parameters for the steel dissolution reaction in the presence of phosphonates were determined.  相似文献   

8.
The inhibition of corrosion of steel by two P-containing compounds, sodium methyldodecyl phosphonate and sodium methyl (11-smethacryloyloxyundecyl) phosphonate, in hydrochloric acid has been investigated at various temperatures using electrochemical techniques (impedance spectroscopy (EIS), potentiodynamic polarization) and weight loss measurements. Inhibition efficiency (E%) increased with phosphonate concentration. Adsorption of inhibitors on the steel surface in 1 M HCl follows the Langmuir isotherm model. EIS measurements showed that the dissolution process of steel occurred under activation control. Polarization curves indicated that inhibitors tested acted as cathodic inhibitors. The temperature effect on the corrosion behavior of steel in 1 M HCl without and with the inhibitor was studied in the temperature range from 313 to 353 K. The adsorption free energy and activation parameters for the steel dissolution reaction in the presence of phosphonates were determined.  相似文献   

9.
This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.  相似文献   

10.
1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.  相似文献   

11.
An example of a new class of corrosion inhibitors, namely, 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole (DAPT) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 at 30 °C was investigated by various corrosion monitoring techniques. A preliminary screening of the inhibition efficiency was carried out using weight loss measurements. At constant acid concentration, inhibitor efficiency increases with concentration of DAPT and is found to be more efficient in 0.5 M H2SO4 than in 1 M HCl. Potentiostatic polarization studies showed that DAPT is a mixed-type inhibitor. The effect of temperature on the corrosion behaviour of mild steel in 1 M HCl with addition of DAPT was studied in the temperature range from 25 to 60 °C. Its was shown that adsorption is consistent with the Langmuir isotherm for 30 °C. The negative free energy of adsorption in the presence of DAPT suggests chemisorption of thiadiazole molecules on the steel surface.  相似文献   

12.
The inhibition effect of 1-(2-Hydroxyethyl)-2-imidazolidinone (2-HEI) on mild steel (MS) corrosion in 0.5?M HCl solution was investigated at different inhibitor concentration and temperature by electrochemical experiments, such as linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and quantum chemical calculations. The inhibitor adsorption process on mild steel in 0.5?M HCl system was studied at different temperatures (20?°C–50?°C). Furthermore, the surface morphology of MS was also investigated with SEM in the absence and the presence of inhibitor. The adsorption of 1-(2-Hydroxyethyl)-2-imidazolidinone on MS surface is an exothermic process and this process obeys the Langmuir adsorption isotherm. The Quantum chemical findings are good agreed with the empirical data.  相似文献   

13.
Abstract

We report, here, the corrosion inhibition of mild steel specimen in 1?M HCl by tamarind fruit pulp aqueous (TFPA) extract. The inhibition property in the presence of TFPA extract is studied using weight loss, polarization measurement and electrochemical impedance spectroscopy (EIS). The inhibitor efficiency is found to vary from 74% to 88% (weight loss method) with TFPA concentration of 100–600?ppm. The reduction in Tafel slopes shows that TFPA acts as a mixed-type inhibitor. The adsorption of the inhibitor on the metal surface follows Langmuir isotherm. The standard Gibbs free energy of adsorption value of –40?kJ/mol suggests the chemisorption of inhibitor molecules via coordinate bond. AFM results exhibit a decrease in the surface roughness of mild steel, exposed to 1?M HCl from 299?±?12 to 154?±?6.6?nm, with increasing concentration of inhibitor from 0 to 600?ppm due to the uniform coverage of inhibitor molecules on the metal surface. X-ray photoelectron spectroscopy de-convoluted high resolution profiles of C 1?s (carbon) for mild steel exposed to 1?M HCl with 600?ppm inhibitor show major peaks corresponding to sp3 C–C/C–H (284.9?eV) and oxygen bondings in C–OH, C=O, COOH with a binding energy of 285.9, 286.9, 288.5?eV, respectively, thereby confirming the adsorption of organic moieties on mild steel surface. Fourier transform infrared spectroscopy further confirms the adsorption of inhibitor molecules on the metal surface. Therefore, tamarind fruit pulp extract is a potential corrosion inhibitor for mild steel, which is cost-effective, green and non-toxic.  相似文献   

14.
The inhibition effect of ceftobiprole against the corrosion of mild steel in 1 M HCl solution was studied by weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and atomic force microscopy techniques. Inhibition efficiency increased with inhibitor concentration where as decreased with acid concentration. Data obtained from EIS studies were analyzed to model the corrosion inhibition process through appropriate equivalent circuit models. The adsorption of ceftobiprole obeyed Langmuir adsorption isotherm. Both thermodynamic and activation parameters were calculated and discussed. Polarization curves indicated that they are mixed type of inhibitors. Polarization curves showed that ceftobiprole act as mixed-type inhibitor. The results obtained from weight loss, EIS and Potentiodynamic polarization are in good agreement.  相似文献   

15.
2-[(E)-{(1S,2R)-1-hydroxy-1-phenylpropan-2-ylimino}methyl]phenol has been synthesized and its influence on corrosion of mild steel in 1?M HCl solution has been studied by means of weight loss and electrochemical measurements under various circumstances. The inhibitor showed a maximum of 91?% of inhibition efficiency at 100?ppm. Interestingly, the inhibition efficiency has decreased on increasing the inhibitor concentration. This abnormal behavior is attributed to the release of phenolic hydrogen from the molecule. The mechanism of corrosion inhibition follows Langmuir adsorption isotherm. The negative ?G ads indicates the spontaneous adsorption of the inhibitor on mild steel surface. Potentiodynamic polarization studies show that it is a mixed type inhibitor with predominant cathodic inhibition. UV?CVisible spectroscopy of the inhibitor and inhibitor adsorbed on the mild steel confirmed the chemical interaction of the inhibitor with the metal surface.  相似文献   

16.
The inhibition effect of Jasminum nudiflorum Lindl. leaves extract (JNLLE) on the corrosion of cold rolled steel (CRS) in 1.0 M hydrochloric acid (HCl) was investigated by weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) methods. The results show that JNLLE acts as a very good inhibitor, and the inhibition efficiency increases with the concentration of JNLLE. The adsorption of JNLLE obeys Langmuir adsorption isotherm. Values of inhibition efficiency obtained from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) are in good agreement. Polarization curves show that JNLLE behaves as a mixed-type inhibitor in hydrochloric acid. EIS shows that charge-transfer resistance increase and the capacitance of double layer decreases with the inhibitor concentration, confirming the adsorption process mechanism. The adsorbed film on CRS surface containing JNLLE inhibitor was also measured by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). A probable inhibitive mechanism is proposed from the viewpoint of adsorption theory.  相似文献   

17.
The inhibition performance of three triazole derivatives on mild steel in 1 M HCl were tested by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The adsorption behavior of these molecules at the Fe surface was studied by the molecular dynamics simulation method and the quantum chemical calculations. Results showed that these compounds inhibit the corrosion of mild steel in 1 M HCl solution significantly. Molecular simulation studies were applied to optimize the adsorption structures of triazole derivatives. The iron/inhibitor/solvent interfaces were simulated and the charges on the inhibitor molecules as well as their structural parameters were calculated in presence of solvent effects. Aminotriazole was the best inhibitor among the three triazole derivatives (triazole, aminotriazole and benzotriazole). The adsorption of the inhibitors on the mild steel surface in the acid solution was found to obey Langmuir's adsorption isotherm.  相似文献   

18.
The effect of commercially available pharmaceutically active compound amikacin disulfate (AMK) against the corrosion of copper in 1 M HNO3 solution was investigated using Tafel polarization, electrochemical impedance spectroscopy (EIS), and weight loss techniques. The results show that inhibition efficiency (IE %) increases with increasing inhibitor concentration from 0.1 to 1.0 mM. Increasing the temperature increased the corrosion rate, and results decreased the inhibition efficiency. The adsorption of inhibitor obeyed Langmuir adsorption isotherm model via physisorption mechanism. EIS technique exhibits one capacitive loop, indicating that the corrosion reaction is controlled by charge transfer process. Polarization measurements showed that the AMK is mixed-type inhibitor. The surface morphologies were studied by scanning electron microscopy and atomic force microscopic techniques. The corrosion mechanism were explained by Fourier transform infrared spectroscopy.  相似文献   

19.
The inhibition effect and adsorption behavior of a novel dissymmetric bisquaternary ammonium salt (DBAL) for Q235 steel in 1 M hydrochloric acid medium were investigated using weight loss method, polarization and electrochemical impedance spectroscopy (EIS). The result of weight loss method indicates that the inhibition efficiency increased with DBAL concentration and temperature in the studied range. The inhibition efficiency is above 90% at a concentration of 3.28 × 10−4 M in the temperature range of 298–328 K. The polarization measurements reveal that DBAL is a mix-type inhibitor which mainly inhibits cathodic process. EIS results show that changes in the impedance parameters (Rct and Cd) were due to the formation of a protective layer on the Q235 steel surface by the adsorption of inhibitor molecules. Adsorption follows the Langmuir isotherm via chemical adsorption on the Q235 steel surface. Thermodynamic and kinetic parameters were evaluated from the effect of temperature on corrosion and inhibition processes to discuss the adsorption mechanism.  相似文献   

20.
Quinine, a natural product, was investigated as a corrosion inhibitor for low carbon steel in 1.0 m HCl solution. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the inhibition action in the temperature range 20–50 °C. The corrosion of steel was controlled by a charge transfer process at the prevailing conditions. The electrochemical results showed that quinine is an efficient inhibitor for low carbon steel and an efficiency up to 96% was obtained at 20 °C. The inhibition efficiency increases with inhibitor concentration and reaches a near constant value in the concentration range 0.48 mM and above. Application of the Langmuir adsorption isotherm enabled a study of the extent and the mode of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号