首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Experiments were conducted on a 4-cylinder direct-injection diesel engine which has a compressing ratio of 19, using ultra low sulfur diesel blended with ethanol using 1–1.5% by volume of 1-dodecanol as the solvent to investigate the particulate emissions of the engine under five engine loads and at engine speeds of 1800 and 2400 rev/min. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. At both engine speeds, with an increase in ethanol in the fuel, the smoke opacity, the particulate mass concentration and the total number of nano-size particles are all reduced. A diesel oxidation catalyst (Finnkat) was used and found to further reduce particulate emission. The smoke opacity, the particulate mass concentration and the total number concentration at 2400 rev/min are higher than those at 1800 rev/min.  相似文献   

2.
《Fuel》2006,85(14-15):2187-2194
In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification.  相似文献   

3.
A.P. Sathiyagnanam  C.G. Saravanan 《Fuel》2008,87(10-11):2281-2285
The objective of this investigation was to improve the performance of a diesel engine by adding oxygenated fuel additives of known percentages. The fuel additives di-methoxy-methane (DMM) and di-methoxy-propane (DMP) were separately blended with diesel fuel in proportions of 1 ml, 3 ml and 5 ml. The experimental study was carried out on a single cylinder DI diesel engine. The result showed an appreciable reduction of emissions such as smoke density, particulate matter and marginal increase in the performance when compared with normal diesel run. The same engine was employed with diesel particulate trap (DPT) in the exhaust pipe to study its influence on the emission analysis.  相似文献   

4.
《Fuel》2002,81(11-12):1605-1609
Dimethyl ether (DME), the target product of this study, has many advantages as diesel fuel. The aim of this study is to develop a catalytic process in which 90% CO conversion to DME and CO2 from syngas (3CO+3H2→DME+CO2) is attained at 1–3 MPa. In such a process, both recycling loop and compression of syngas can be omitted resulting in an economic process based on unused, dispersed and small-scale carbon resources. To overcome the equilibrium conversion limit we designed temperature-gradient reactor (TGR). In TGR, the temperature of the catalyst bed decreases along with the down flow of reaction gas. The performance of the catalyst in TGR was much higher than that in a conventional isothermal fixed bed reactor. For example, 90% CO conversion and high STY (1.1 kg MeOH eqiv./kg cat./h) was attained at the same time in TGR at 550–510 K, 3 MPa.  相似文献   

5.
In the present paper, results of an experimental investigation carried out in a modern diesel engine running at different operative conditions and fuelled with blends of diesel and n-butanol, are reported. The exploration strategy was focused on the management of the timing and injection pressure to achieve a condition in which the whole amount of fuel was delivered before ignition. The aim of the paper was to evaluate the potential to employ fuel blends having low cetane number and high resistance to auto-ignition to reduce engine out emissions of NOx and smoke without significant penalty on engine performance. Fuel blends were mixed by the baseline diesel (BU00) with 20% and 40% of n-butanol by volume. The n-butanol was taken by commercial production that is largely produced through petrochemical pathways although the molecule is substantially unchanged for butanol produced through biological mechanisms.The experimental activity was performed on a turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system. The engine equipment includes an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injectors. Engine tests were carried out at 2500 rpm and 0.8 MPa of BMEP exploring the effect of start of injection, O2 concentration at intake and injection pressure on combustion behavior and engine out emissions. The in-cylinder pressure and rate of heat release were investigated for the neat diesel and the two blends to evaluate engine performance and exhaust emissions both for the conventional diesel and the advanced premixed combustion processes.The management of injection pressure, O2 concentration at intake and injection timing allowed to realize a partial premixed combustion by extending the ignition delay, particularly for blends. The main results of the investigation made reach smoke and NOx emissions due to the longer ignition delay and a better mixing control before combustion. The joint effect of higher resistance to auto ignition and higher volatility of n-butanol blends improved emissions compared to the neat diesel fuel with a low penalty on fuel consumption.  相似文献   

6.
《Fuel》2007,86(12-13):1831-1839
The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels – low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO2 and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles.  相似文献   

7.
The Selective Catalytic Reduction (SCR) of NOx has been performed in a real diesel exhaust stream with commercial diesel fuel by using a full size home-made Pt/beta zeolite/honeycomb prototype catalyst. Fuel was injected upstream of the catalyst to achieve total hydrocarbon concentrations between 1000 and 5000 ppm, and the SCR behavior observed was similar to that typically reported in laboratory experiments performed with model hydrocarbons. Typical NOx removal volcano-shape profiles, with maxima at 250 °C for all THC inlet concentrations, were obtained, with an optimum THC concentration of 3000 ppm.  相似文献   

8.
Aerosol measurements were carried out in medium-speed diesel engines to determine the aerosol characteristics and formation in four-stroke diesel engines equipped with turbocharger(s) burning heavy fuel and high ash-content heavy fuel oil. The mass size distributions are bimodal with a main mode at 60–90 nm and a second mode at 7–10 μm. The small mode particles are formed by nucleation of volatilized fuel oil ash species, which further grow by condensation and agglomeration. The large mode particles are mainly agglomerates of different sizes consisting of the small particles. The number size distributions peak at 40–60 nm, as also observed in the SEM micrographs. Agglomerates consisting of these primary spherical particles are also found. The TEM micrographs reveal that these particles consist of even smaller structures. Based on the mass and elemental size distributions evidence of high volatility of the fuel oil ash was found. The main effect on the aerosol size distributions was caused by the engine type and fuel oil properties.  相似文献   

9.
《Fuel》2007,86(1-2):143-151
The dynamic viscosities of biodiesel derived from ethyl esters of fish oil, no. 2 diesel fuel, and their blends were measured from 298 K down to their respective pour points. Blends of B80 (80 vol.% biodiesel–20 vol.% no. 2 diesel), B60, B40 and B20 were investigated. All the viscosity measurements were made with a Bohlin VOR Rheometer. Cloud point and pour point measurements were made according to ASTM standards. Arrhenius equations were used to predict the viscosities of the pure Biodiesel (B100), no. 2 diesel fuel (B0) and the biodiesel blends (B80, B60, B40, and B20) as a function of temperature. The predicted viscosities agreed well with measured values. An empirical equation for calculating the dynamic viscosity of these blends as a function of both temperature and blend has been developed. Furthermore, based on the kinematic viscosity and density measurements of B100 up to 573 K by Tate et al. [Tate RE, Watts KC, Allen CAW, Wilkie KI. The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1010–5; Tate RE, Watts KC, Allen CAW, Wilkie KI. The densties of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1004–9] an empirical equation for predicting the dynamic viscosity of pure biodiesel for temperatures from 277 K to 573 K is given. Empirical equations for predicting the cloud and pour point for a given blend give values in good agreement with experiments. The dynamic viscosity of biodiesel and its blends increases as temperature decreases and show Newtonian behaviour down to the pour point. Dynamic viscosity, cloud point and pour point decreases with an increase in concentration of no. 2 diesel in the blend.  相似文献   

10.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

11.
Hard hydrogenated amorphous carbon thin films were heated in vacuum to different temperatures and held at these for at least 30 min. Afterwards, the cooled-down samples were analyzed by various techniques. Strict and reproducible correlations were found between all the determined parameters and the annealing temperature. Single-wavelength ellipsometry shows that the real part of the refractive index of the films at 633 nm wavelength decreases with temperature while the extinction coefficient increases. It also shows swelling of the films with a thickness increase of about 50% for films heated to ≈ 1000 K. The associated decrease of mass density is proportional to the decrease in refractive index. Ion beam analysis shows that hydrogen is released from the films during heating with only about 5% of the initial H remaining after annealing at 1300 K while no significant loss of carbon can be detected. The losses of hydrogen during heating are monitored by temperature programmed desorption and they are in good agreement with the ion-beam-analysis results. Raman spectroscopy delivers evidence of aromatization of the films under heat treatment. Indication of first structural changes is found already at 600 K while the quickest changes of the refractive index, thickness, and hydrogen content with temperature occur around 850 K.  相似文献   

12.
The present paper describes the characterization of an autothermal reformer designed to generate hydrogen by autothermal reforming (ATR) from commercial diesel fuel (~10 ppm S) and jet fuel (~200 ppm S) for a 5 kWe polymer electrolyte fuel cell (PEFC). Commercial noble metal-based catalysts supported on 900 cpsi cordierite monoliths substrates were used for ATR with reproducible results. Parameters investigated in this study were the variation of the fuel inlet temperature, fuel flow and the H2O/C and O2/C ratios. Temperature profiles were studied both in the axial and radial directions of the reformer. Product gas composition was analyzed using gas chromatography.It was concluded from the experiments that an elevated fuel inlet temperature (≥60 °C) and a higher degree of fuel dispersion, generated via a single-fluid pressurized-swirl nozzle at high fuel flow, significantly improved the performance of the reformer. Complete fuel conversion, a reforming efficiency of 81% and an H2 selectivity of 96% were established for ATR of diesel at P = 5 kWe, H2O/C = 2.5, O2/C = 0.49 and a fuel inlet temperature of 60 °C. No hot-spot formation and negligible coke formation were observed in the reactor at these operating conditions. The reforming of jet fuel resulted in a reforming efficiency of only 42%. A plausible cause is the coke deposition, originating from the aromatics present in the fuel, and the adsorption of S-compounds on the active sites of the reforming catalyst.Our results indicate possibilities for the developed catalytic reformer to be used in mobile fuel cell applications for energy-efficient hydrogen production from diesel fuel.  相似文献   

13.
《Fuel》2007,86(7-8):965-971
Biodiesel has been produced by transesterification of waste frying oil with methanol catalysed by sodium methoxide. The unsaturated fatty acid methyl esters of the biodiesel produced have been nitrated by two alternative nitration methods, showing an incorporation of nitrogen between 3.43 and 5.10 wt.%, in the chemical form of nitro, nitrate and acetoxy functional groups. A detailed gas chromatography–mass spectrometry analysis has been carried out on the nitrated biodiesel samples in order to identify the nitration products of this complex mixture. The nitrated biodiesel has been added to a base diesel fuel in a 1000 mg L−1 concentration resulting in an increase of the cetane number of the fuel by more than five points, from 54.7 to 60.5.  相似文献   

14.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

15.
《Fuel》2007,86(7-8):1139-1143
In this study, biodiesel fuel and fuel additives were produced from crude tall oil that is a by-product in the pulp manufacturing by craft or sulphate pulping process. Fatty acids and resinic acids were obtained from crude tall oil by distillation method. Tall oil methyl ester (biodiesel) was produced from fatty acids. Resinic acids were reacted with NiO and MnO2 stoichiometrically for production of metallic fuel additives. Each metallic fuel additive was added at the rate of 8 μmol/l and 12 μmol/l to make mixtures of 60% tall oil methyl ester/40% diesel fuel (TE60) for preparing test fuels. Metallic fuel additives improved properties of biodiesel fuels, such as pour point and viscosity values. Biodiesel fuels were tested in an unmodified direct injection diesel engine at full load condition. Specific fuel consumption of biodiesel fuels increased by 6.00%, however, in comparison with TE60, it showed trend of decreasing with adding of additives. Exhaust emission profile of biodiesel fuels improved. CO emissions and smoke opacity decreased up to 64.28% and 30.91% respectively. Low NOx emission was also observed in general for the biodiesel fuels.  相似文献   

16.
The ethanol sensing properties of CuO nanowires prepared by oxidation reaction of copper plate have been examined. The characterization of CuO nanowires by FE-SEM, EDS, and TEM revealed diameters of 100–400 nm and a monoclinic structure with a growth direction along 〈1 1 0〉 direction. The ethanol sensing characteristics of CuO nanowires were studied at ethanol concentrations of 100–1000 ppm and working temperatures of 200–280 °C. An increase of resistance was observed under an ethanol vapor atmosphere due to the p-type semi-conducting property of CuO. It was found that the sensitivity, the response and the recovery time depended on the working temperatures and also ethanol concentration. The sensor exhibited the optimum sensitivity of 1.5 to ethanol vapor concentration of 1000 ppm at the working temperature of 240 °C with a response and recovery time of 110 and 120 s, respectively.  相似文献   

17.
To investigate the combustion characteristics of palm methyl ester (PME) as an alternative fuel for gas turbines, combustion experiments at atmospheric pressure using high-temperature air (673 K) were performed. Chemical equilibrium calculations and investigations of fuel atomizing characteristics using a laser diffraction spray analyzer (LDSA) were also conducted. The results show that combustion characteristics of PME are similar to those of diesel fuel. Furthermore, it is indicated that NOx emissions can be reduced by using PME instead of diesel fuel for gas turbines.  相似文献   

18.
Tungsten oxide nanorods have been prepared by a simple microwave hydrothermal (MH) method via Na2SO4 as structure-directing agent at 180 °C for 20 min. The structure and morphology of the products are characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The obtained nanorods are about 20–50 nm in diameter and several micrometers in length. The ethanol sensing property of as-prepared tungsten oxide nanorods is studied at ethanol concentration of 10–1000 ppm and working temperature of 370–500 °C. It was found that the sensitivity depended on the working temperatures and also ethanol concentration. The results show that the tungsten oxide nanorods can be used to fabricate high performance ethanol sensors.  相似文献   

19.
乳化柴油研究及其应用进展   总被引:27,自引:3,他引:24  
介绍了乳化柴油的节能降污机理,阐述了乳化剂的选择和用量、极性物、掺水率和乳化设备对柴油乳液的影响,对乳化柴油的稳定性、燃烧性能、腐蚀性、节能和环保等性质在应用中的发展进行了概述.认为通过添加少量有机极性物(如乙醇)制成微乳液可以改善乳液的稳定性、降低乳液黏度以改善其燃烧性能。并对乳化柴油的发展趋势进行了展望,指出生物微乳化柴油是今后乳化柴油发展的一个重要方向。  相似文献   

20.
The latest generation of fuel systems for direct-injection spark-ignition engines uses injection nozzles that accommodate a number of holes with various angles in order to offer flexibility in in-cylinder fuel targeting over a range of engine operating conditions. However, the high-injection pressures that are needed for efficient fuel atomisation can lead to deteriorating effects with regards to engine exhaust emissions (e.g. unburned hydrocarbons and particulates) from liquid fuel impingement onto the piston and liner walls. Eliminating such deteriorating effects requires fundamental understanding of in-cylinder spray development processes, taking also into account the diversity of future commercial fuels that can contain significant quantities of bio-components with very different chemical and physical properties to those of typical liquid hydrocarbons. This paper presents high-speed imaging results of spray impingement onto the liner of a direct-injection spark-ignition engine, as well as crank-angle resolved wall heat flux measurements at the observed locations of fuel impingement for detailed characterisation of levels and timing of impingement. The tests were performed in a running engine at 1500 RPM primarily at low load (0.5 bar intake pressure) using 20, 50 and 90 °C engine temperatures. Gasoline, iso-Octane, Butanol, Ethanol and a blend of 10% Ethanol with 90% Gasoline (E10) were used to encompass a range of current and future fuel components for spark-ignition engines. The collected data were analysed to extract mean and standard deviation statistics of spray images and heat flux signals. The results were also interpreted with reference to physical properties and evaporation rates predicted by a single droplet model for all fuels tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号