首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
《Ceramics International》2016,42(11):12756-12762
Three-dimensional (3D) Cf/ZrC–SiC composites were successfully prepared by the polymer infiltration and pyrolysis (PIP) process using polycarbosilane (PCS) and a novel ZrC precursor. The effects of PyC interphase of different thicknesses on the mechanical and ablation properties were evaluated. The results indicate that the Cf/ZrC–SiC composites without and with a thin PyC interlayer of 0.15 µm possess much poor flexural strength and fracture toughness. The flexural strength grows with the increase of PyC layer thickness from 0.3 to 1.2 µm. However, the strength starts to decrease with the further increase of the PyC coating thickness to 2.2 µm. The highest flexural strength of 272.3±29.0 MPa and fracture toughness of 10.4±0.7 MPa m1/2 were achieved for the composites with a 1.2 µm thick PyC coating. Moreover, the use of thicker PyC layer deteriorates the ablation properties of the Cf/ZrC–SiC composites slightly and the ZrO2 scale acts as an anti-ablation component during the testing.  相似文献   

2.
To better understand the pyrocarbon (PyC) interphase growth mechanism, a series of experiments was conducted on the PyC deposited on T-300™ and T-700™ carbon fibers by the chemical vapor infiltration (CVI) method. Nine groups of fabrication parameters were used to analyze the effects of deposition temperature, pressure, and residence time on the PyC interphase growth mechanism. Atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy, and nanoindentation tests were performed to characterize the microstructures of carbon fibers and PyC interphase. The PyC interphase growth mechanism was discussed, and the relationships between the fabrication parameters, R (C2/C6) value, texture type, and interphase thickness were established through numerical simulations. The hardness and modulus of PyC for T-300™ and T-700™ carbon fibers were measured. The tensile behaviors of C/SiC minicomposites with medium and high textures PyC interphases were analyzed. The C/SiC composite with the medium texture PyC interphase possessed the higher fracture strength and failure strain with a longer fiber pullout length at the fracture surface.  相似文献   

3.
The effect of single-layer pyrocarbon (PyC) and multilayered (PyC/SiC)n=4 interphases on the flexural strength of un-coated and SiC seal-coated stitched 2D carbon fiber reinforced silicon carbide (Cf/SiC) composites was investigated. The composites were prepared by I-CVI process. Flexural strength of the composites was measured at 1200 °C in air atmosphere. It was observed that irrespective of the type of interphase, the seal coated samples showed a higher value of flexural strength as compared to the uncoated samples. The flexural strength of 470 ± 12 MPa was observed for the seal coated Cf/SiC composite samples with multilayered interphase. The seal coated samples with single layer PyC interphase showed flexural strength of 370 ± 20 MPa. The fractured surfaces of tested samples were analyzed in detail to study the fracture phenomena. Based on microstructure-property relations, a mechanism has been proposed for the increase of flexural properties of Cf/SiC composites having multilayered interphase.  相似文献   

4.
《Ceramics International》2020,46(14):22297-22306
SiC fiber-reinforced SiC matrix (SiCf/SiC) composites are promising materials for high-temperature structural applications. In this study, KD-II SiC fiber bundles with a C/Si ratio of approximately 1.25 and an oxygen amount of 2.53%, were used as reinforcement. PyC interphase, PyC-SiC co-deposition interphase I and II, with different thicknesses, and SiC matrix were deposited into the SiC fiber bundles by using chemical vapor infiltration (CVI) to form SiCf/SiC mini composites. When the thickness of the interphase is approximately 1000 nm, the ultimate tensile stress and strain of SiCf/SiC mini composites with PyC-SiC co-deposition interphase I can reach 1120.0 MPa and 0.72%, respectively, which are significantly higher than those of SiCf/SiC mini composites with a PyC interphase (740.0 MPa, 0.87%) and PyC-SiC co-deposition interphase II (645.0 MPa, 0.54%). The effect of thicknesses and types of interphase on tensile fracture behavior of mini composites and then the fracture mechanism are discussed in detail.  相似文献   

5.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

6.
《Ceramics International》2022,48(7):9483-9494
In this work, quasi-isotropic chopped carbon fiber-reinforced pyrolytic carbon and silicon carbide matrix (Cf/C–SiC) composites and chopped silicon carbide fiber-reinforced silicon carbide matrix (SiCf/SiC) composites were prepared via novel nondamaging method, namely airlaid process combined with chemical vapor infiltration. Both composites exhibit random fiber distribution and homogeneous pore size. Young's modulus of highly textured pyrolytic carbon (PyC) matrix is 23.01 ± 1.43 GPa, and that of SiC matrix composed of columnar crystals is 305.8 ± 9.49 GPa in Cf/C–SiC composites. Tensile strength and interlaminar shear strength of Cf/C–SiC composites are 52.56 ± 4.81 and 98.16 ± 24.62 MPa, respectively, which are both higher than those of SiCf/SiC composites because of appropriate interfacial shear strength and introduction of low-modulus and highly textured PyC matrix. Excellent mechanical properties of Cf/C–SiC composites, particularly regarding interlaminar shear strength, are due to their quasi-isotropic structure, interfacial debonding, interfacial sliding, and crack deflection. In addition to the occurrence of crack deflection at the fiber/matrix interface, crack deflection in Cf/C–SiC composites takes also place at the interface between PyC–SiC composite matrix and the interlamination of multilayered PyC matrix. Outstanding mechanical properties of as-prepared Cf/C–SiC composites render them potential candidates for application as thermal structure materials under complex stress conditions.  相似文献   

7.
In this paper, T-700™ carbon fiber–reinforced silicon carbide (C/SiC) minicomposites with pyrocarbon (PyC) interphase with different textural microstructure and thickness were fabricated using the chemical vapor infiltration method. The interface properties (i.e., textural microstructure, thickness, hardness, and modulus) were obtained through multiple testing methods (i.e., Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and nanoindentation tests). Relationships between the deposition temperature and residence time with the texture type (i.e., low, medium, and high texture) were established. Uniaxial tensile experiments were conducted for C/SiC minicomposites with different PyC interphases to characterize the composite's internal damage evolution and fracture. Relationships between the composite's tensile nonlinear damage evolution, fracture strength and strain, PyC interphase texture, and thickness were established. The composite's tensile strength and fracture strain were the highest for the C/SiC minicomposite with medium-high texture PyC interphase. For the C/SiC minicomposite with the same texture interphase, the composite's tensile strength and fracture strain were affected by the coating thickness. The higher the thickness of the coating, the lower the composite's tensile strength and fracture strain.  相似文献   

8.
《Ceramics International》2020,46(15):23785-23796
Carbon fibre reinforced CVI-SiC matrix (Cf/SiC) composite is well known for its superior properties such as low density, high specific modulus, high fracture toughness, and high temperature mechanical properties. In the present work, 2.5-Directional Cf/SiC composites with (PyC/SiC) n=4 multilayer interface having two different thicknesses with a density of ~2.1 g cm-3 are prepared through isobaric isothermal chemical vapour infiltration technique. High temperature tensile properties of the prepared composites with and without Si-B-C seal coating are studied and the results are presented. Samples prepared without seal coat exhibited a KICof ~ 30 MPa m1/2, and tensile strength of ≥200 MPa at room temperature. Si-B-C seal coated Cf/SiC composites has shown significant increase (28%) in high temperature tensile strength at 1200 °C and 1500 °C respectively compared to uncoated composites. Microstructural observations, XRD, and XPS studies support the observed thermomechanical behaviour of these composites at 1200 °C and 1500 °C.  相似文献   

9.
Alternating pyrolytic carbon/boron nitride (PyC/BN)n multilayer coatings were applied to the KD–II silicon carbide (SiC) fibres by chemical vapour deposition technique to fabricate continuous SiC fibre-reinforced SiC matrix (SiCf/SiC) composites with improved flexural strength and fracture toughness. Three-dimensional SiCf/SiC composites with different interfaces were fabricated by polymer infiltration and pyrolysis process. The microstructure of the coating was characterised by scanning electron microscopy, X–photoelectron spectroscopy and transmission electron microscopy. The interfacial shear strength was determined by the single-fibre push-out test. Single-edge notched beam (SENB) test and three-point bending test were used to evaluate the influence of multilayer interfaces on the mechanical properties of SiCf/SiC composites. The results indicated that the (PyC/BN)n multilayer interface led to optimum flexural strength and fracture toughness of 566.0?MPa and 21.5?MPa?m1/2, respectively, thus the fracture toughness of the composites was significantly improved.  相似文献   

10.
Inspired by grouting technique in architectural engineering, an innovative method of slurry injection and vacuum impregnation was put forward to introduce nanosized ZrC–SiC ceramics into PyC modified 3-D needle-punched carbon fiber preform homogeneously and continuously, followed by spark plasma sintering to prepare Cf/ZrC–SiC with graceful mechanical responses. The composite possessed improved fracture toughness and work of fracture at 5.37 ± 0.25 MPa∙m1/2 and 951 ± 12 J/m2, 50% and nearly one order of magnitude higher than those of ZrC–SiC composite, respectively, with rivaling flexural strength at 177 ± 8 MPa synchronously. A graceful fracture mode was embodied in an obviously extended yield plateau with increased failure displacement by 300%. This enhancement was attributed to the uniform and continuous combination of ZrC–SiC with carbon fiber preform as well as protection and interface tailoring from PyC coating. The study offered an easy and effective method of preparing 3-D fiber reinforced ceramic matrix composites.  相似文献   

11.
Elastic constants and tensile behaviour of chemical vapour infiltration processed 2.5D Cf/SiC composites possessing multilayered (PyC/SiC)n=4 interphase, Si-B-C containing matrix and SiC seal-coating have been evaluated with microstructural examination and damage assessment. The strength obtained as ~187 ± 2 MPa in tensile tests at 27 °C is increased by ~18% and ~22% at 1000 °C and 1250 °C, respectively due to reduced thermal stress and increased strength of load-sharing C-fibres, which are protected from oxidation till failure by a self-healing borosilicate layer. The damage evolving during tension tests has been quantified by relating it to decrease of stress-strain slope with strain. Higher (6–8 times) elastic constants measured along fibre-axes than that obtained transversely, indicate significant anisotropy. Owing to matrix cracking with fibre-debonding and pull-out, the fibre-oriented elastic constants of tensile-fractured samples are significantly lower than those of as-received composites, and the difference scales with temperature, whereas negligible change is observed perpendicular to the fibre axes.  相似文献   

12.
Effects of SiC/HfC ratios on the ablation and mechanical properties of 3D Cf/HfC–SiC composites by precursor impregnation and pyrolysis (PIP) process were investigated systematically. Both strength (flexural and compressive strength) and modulus increase as the SiC/HfC ratio are improved. The compact and stiff HfC-SiC matrix in addition to the carbon fiber and PyC interphase with less reaction damage accounts for the improved mechanical properties of Cf/HfC-SiC with higher SiC/HfC ratios. Meanwhile, both weight loss and erosion depth of Cf/HfC-SiC are improved with the increased SiC/HfC ratios. Therefore, in order to balance the ablation and mechanical properties, an appropriate SiC/HfC ratio should be considered.  相似文献   

13.
《Ceramics International》2017,43(10):7387-7392
In the present study, a novel liquid polycarbosilane (LPCS) with a ceramic yield as high as 83% was applied to develop 3D needle-punched Cf/SiC composites via polymer impregnation and pyrolysis process (PIP). The cross-link and ceramization processes of LPCS were studied in detail by FT-IR and TG-DSC; a compact ceramic was obtained when LPCS was firstly cured at 120 °C before pyrolysis. It was found that the LPCS-Cf/SiC composites possessed a higher density (2.13 g/cm3) than that of the PCS-Cf/SiC composites even though the PIP cycle for densification was obviously reduced, which means a higher densification efficiency. Logically, the LPCS-Cf/SiC composites exhibited superior mechanical properties. The shorter length and rougher surfaces of pulled-out fibers indicated the LPCS-Cf/SiC composites to possess a stronger bonding between matrix and PyC interphase compared with the PCS-Cf/SiC composites.  相似文献   

14.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   

15.
Carbon/carbon composites with PyC/SiC/TiC multilayer interphases (CCs-PST) have been successfully prepared by a joint process of chemical vapor deposition and carbothermal reduction. Effect of the Ti(OC4H9)4/C6H4(OH)2 molar ratio on the morphology of TiC particles was investigated and the ratio was optimized as 8:1. When the Ti(OC4H9)4/C6H4(OH)2 molar ratio was 8:1, many homogeneously distributed TiC nanoparticles with the sizes of 100–500 nm on the fibers were observed. The structural evolution of CCs-PST was discussed and the mechanical properties of as-prepared materials were investigated by flexural and interlaminar shear tests. The resulted composites demonstrated a PyC and SiC mixed inner interphase with the thickness of 0.5–1 μm and a TiC outer interphase with a thickness about 0.5 µm. Flexural strength of 201.45 ± 5.27 MPa and modulus of 21.21 ± 1.58 GPa showed a 41.7% and 7.83% improvement respectively as compared with that of the neat CCs. The interlaminar shear strength of CCs-PST was 66.71 ± 4.87 MPa, which was 51.20% higher than that of the CCs. The improved mechanical properties were attributed to the enhanced interface bond between fibers and matrix induced by the PST.  相似文献   

16.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   

17.
The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.  相似文献   

18.
Cf/ZrC‐SiC composites with a density of 2.52 g/cm3 and a porosity of 1.68% were fabricated via reactive melt infiltration (RMI) of Si into nano‐porous Cf/ZrC‐C preforms. The nano‐porous Cf/ZrC‐C preforms were prepared through a colloid process, with a ZrC “protective coating” formed surrounding the carbon fibers. Consequently, highly dense Cf/ZrC‐SiC composites without evident fiber/interphase degradation were obtained. Moreover, abundant needle‐shaped ZrSi2 grains were formed in the composites. Benefiting from this unique microstructure, flexural strength, and elastic modulus of the composites are as high as 380 MPa and 61 GPa, respectively, which are much higher than Cf/ZrC‐SiC composites prepared by conventional RMI.  相似文献   

19.
In order to improve the mechanical properties, vertically aligned carbon nanotubes (VACNTs) were in situ introduced on the pyrocarbon (PyC) interfaces of the multilayer preform via chemical vapor deposition (CVD) process under tailored parameters. Chemical vapor infiltration (CVI) process was then employed to densify the multilayer preform to acquire SiC/SiC composites. The results show that the growth of VACNTs on PyC interface is highly dependent to the deposition temperature, time and constituent of gas during CVD process. The preferred orientation and high graphitization of VACNTs were obtained when temperature is 800?℃ and C2H4/H2 ratio is 1:3. The bending strength and fracture toughness of SiC/SiC composites with PyC and PyC-VACNTs interfaces were compared. Compared to the SiC/SiC composite with PyC interface, the bending strength and fracture toughness increase 1.298 and 1.359 times, respectively after the introduction of PyC-VACNTs interface to the SiC/SiC composites. It is also demonstrated that the modification of PyC interface with VACNTs enhances the mechanical properties of SiC/SiC composites due to the occurrence of more fiber pull-outs, interfacial debonding, crack branching and deflection  相似文献   

20.
SiC coatings were successfully synthesized on SiC fibers by precursor infiltration and pyrolysis (PIP) method using polycarbosilane (PCS) as precursor. The morphology of as-fabricated coatings was observed by SEM, and its structure was characterized by XRD and Raman spectrum. The SiC fiber reinforced chemical vapor infiltration SiC (SiCf/CVI-SiC) composites with PIP-SiC coatings as interphase were fabricated. And, the effects of PIP-SiC interphase on mechanical properties of composites were investigated. The experimental results point out that the coating is smooth and there is little bridging between fibers. The coating is amorphous with SiC and carbon micro crystals. The flexural strength of composites with and without PIP-SiC interphase is 220 and 100 MPa, respectively. And the composites with PIP-SiC interphase obviously exhibit a toughened fracture behavior. The oxidation resistance of composites with PIP-SiC interphase is much better than that of composites with pyrolytic carbon (PyC) interphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号