首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

2.
Four greenhouse experiments were conducted using three soils to determine the availability to plants of P from unground North Carolina phosphate rock (PR) treated with 20% to 50% of the H3PO4 required for complete acidulation. The influences of soil P retention, P status, the method of preparation of partially acidulated phosphate rocks (PAPRs) and the granule size of the products were investigated. Perennial ryegrass was grown as the test plant for up to 8 months. Triple superphosphate (TSP) was used as the standard fertilizer and unground North Carolina rock was included for comparison.The dry matter yield and P uptake response curves showed that in all experiments PAPRs were markedly superior to the PR. P status of soils appeared to influence the effectiveness of PAPRs to a greater extent than P retention. In soils of low P status the degree of acidulation required for PAPR to be nearly or as effective as TSP was 50% whereas in a soil of high P status even 30% PAPR applied as a maintenance fertilizer was effective. There was a significant positive correlation between water soluble P of fertilizers and P uptake by ryegrass. However, in general PAPRs were more effective per unit of water soluble P than TSP. Granule size (< 1 mm and 1–2 mm) and method of preparation of PAPRs did not alter the effectiveness of PAPRs.  相似文献   

3.
Partially acidulated phosphate rocks (PAPRs) are manufactured by acidulation of PRs with less than the stoichiometric amounts of, usually, phosphoric or sulphuric acids. Products of similar composition to PAPRs are also prepared by cogranulating superphosphate with PRs. For most crops the agronomic value of PAPRs is determined by the availability to plants of their water-soluble P as well as their PR P component. The acid unreacted PR present in the directly acidulated PAPR, is considered to be less reactive than the original PR. This is probably the result of surface coatings of chemical compounds formed during acidulation. Under some soil conditions, in the presence of plants, the PR component probably dissolves faster than the original PR. For seasonal crops, except for fast growing ones such as squash (Cucurbita maxima), reactive PRs partially acidulated so that the final products contain about 50% of its total P in water-soluble form, are generally as effective as fully acidulated superphosphate. For permanent pastures the water P content may be reduced to about 40% of total P without reducing their agronomic effectiveness of the product. In medium P retentive soils pH seems to have little or no influence on the agronomic effectiveness of PAPRs. In highly P retentive soils increasing soil pH reduces the agronomic effectiveness of phosphoric PAPRs apparently by reducing the solubility of the PR component of PAPRs. Even at low pH the dissolution of unreacted PR in sulphuric PAPRs is less than that in phosphoric PAPRs, probably due to the possible coating of calcium sulphate on the residual PR in sulphuric PAPRs. Results on the agronomic effectiveness of PAPRs prepared from unreactive rocks were highly variable and no generalisation could be made regarding the degree of acidulation needed for the products to be consistently effective. Single superphosphate (SSP) cogranulated with reactive rocks (SSP/PR) was agronomically less effective than SSP, and also than phosphoric PAPRs of similar water-soluble P.  相似文献   

4.
The agronomic effectiveness (yield and P uptake) of twelve granular, partially acidulated phosphate rock fertilizers (PAPR) and two finely ground, unacidulated phosphate rocks (PR) were compared to that of a single superphosphate in a long-term greenhouse experiment with lucerne (Medicago sativa L., cv. CUF101), grown in a low P sorbing, moderately acid, sandy loam soil of moderate P status (Paleustaf). The PAPRs were prepared from two unreactive PRs (Christmas Is. A grade and Duchess rock from Queensland) and acidulated at two rates (25% and 50% on a H2SO4 to single superphosphate basis) with either H2SO4 or H3PO4. Additional products included H2SO4 PAPRs cogranulated with elemental S (10% w/w).Superphosphate was consistently superior to all PRs and PAPRs in agronomic effectiveness throughout this two-year study. The most effective of the PAPRs were those that were 50% acidulated with H2SO4 and cogranulated with elemental S; this type of fertilizer from both rocks was approximately 2/3 as effective as superphosphate when relative agronomic effectiveness indices (RAE) were calculated from cumulative yields. The increase in agronomic effectiveness relative to superphosphate (RAE value) by the partial acidulation of the PR could be attributed to its effect of increasing the P solubility in the PAPR. A curvilinear relationship existed between the RAE values of PRs and PAPRs, measured from cumulative yield or P uptake data, and the percentage of the total P in each fertilizer that was in a soluble (water + citrate soluble) form. Cogranulation with elemental S (10% w/w) significantly displaced this relationship upwards by increasing the RAE of H2SO4 PAPRs by more than 50%. The maximum cumulative recovery of applied P by lucerne tops after five bulked harvests (fifteen consecutive harvests) was 61.5%, which occurred at the low application rate of superphosphate. The decline in the substitution value of PRs for superphosphate, that occurred with increasing P rates tended to be offset both by increasing the level of acidulation and by cogranulating the PAPR with elemental S.  相似文献   

5.
A glasshouse study was conducted to determine the influence of soil pH on the agronomic effectiveness of partially phosphoric (Phos-PAPR) and partially sulphuric (SA-PAPR) acidulated phosphate rocks (PR). For Phos-PAPR ground North Carolina PR (NCPR) was acidulated with 10, 30 and 50% of acid needed for complete acidulation. For SA-PAPR a blend of NCPR, Arad and Khouribga PRs were acidulated with 60% of the acid needed. The relative agronomic effectiveness of these PAPRs were compared with superphosphate (SSP) and ground NCPR. A highly phosphate (P) retentive and P deficient pasture soil was used. Prior to addition of fertilizers to soil, the pH of soil was adjusted to 5.1 (initial soil pH) 5.4, 5.7 and 6.1 by applying varying amounts of Ca(OH)2. Ryegrass (Lolium perenne) was grown as the test plant over a period of eight months. Fertilizers were applied at three rates plus control. Soil pH was monitored and continuously adjusted to the desired levels throughout the experimental period.The dry matter yields and P uptake in SSP treated pots were not influenced by soil pH. With increasing soil pH, agronomic performance of Phos-PAPRs and NCPR significantly (P<0.01) decreased but that of SA-PAPR was not affected. On the basis of per unit water-soluble P applied, uptake of P by plants was greater from PAPRs than SSP. Using the P uptake values of SSP and NCPR (which was used to prepare the PAPRs), the dissolution of P from the residual PR component of the PAPRs were calculated. The residual PR component of the Phos-PAPRs apparently dissolved in greater quantities than unacidulated NCPR. Dissolution of the residual PR was enhanced with increasing degree of acidulation. However, in the case of SA-PAPR, the agronomic performance of the PAPR was mostly dependent on the water-soluble P component of the PAPR. The uptake of P from the residual PR component of the SA-PAPR was insignificant.  相似文献   

6.
Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg–1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 °C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha–1, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (CP<0.02 mg P l–1) and low exchangeable P (E1min < 5 mg P kg–1). The capacity factor and the fixation index of the soils were variable. Application of water-soluble P as TSP increased both the CP and E1 values of all the soils above the critical levels. Togo PR was least effective among the fertilizers tested for all soil soils, except in Boi soil. Acidulation of Togo PR (Togo PAPR-50%) was an effective means to increase its agronomic effectiveness. Direct application of natural Togo PR would be only feasible in the Boi soil series as reflected by its high Pdff% value in soil solution. Incubation with the P fertilizers caused an increase in the soil pH and a decline in the effectiveness of the applied P fertilizers, irrespective of the soil and the fertilizer utilized. Based upon the results of the greenhouse pot experiment, the relative crop response index (RCRI) in terms of increasing dry matter yield and P uptake followed the order of TSP > PAPR = Mali PR >Togo PR = Control. Both the laboratory index, Pdff% in soil solution derived from the isotopic method and the RCRI values obtained from the pot experiment produced similar results in ranking the P fertilizers tested according to their agronomic effectiveness. The isotopic kinetic method may be considered as an alternative to both greenhouse and field methods in the evaluation of agronomic effectiveness of P fertilizers in tropical acid soils when it offers comparative advantages in assessing the soil P status and its changes. But trained staff and adequate laboratory facilities are needed to perform this technique. Also the method can be used as a reference for comparison purposes as in this case. Further research is needed to assess the overall agronomic effectiveness (immediate and residual effects) of PR sources in predominant cropping systems of this region of Ghana.  相似文献   

7.
Phosphorus (P) inputs are required for sustainable agricultural production in most acid soils of the tropics and subtropics. Phosphate rocks (PR) and organic materials have been suggested as alternative P sources in these soils. Quantitative information on the P availability from sewage sludge (SL) is scanty. Methods to improve the effectiveness of PR such as partial acidulation and compaction with water-soluble P sources have been recommended. The objective of this greenhouse study was to evaluate the relative agronomic effectiveness (RAE) of Florida PR and sewage sludges (irradiated and non-irradiated) applied alone and in mixture with a water-soluble source (triple superphosphate, TSP) at two rates (50 and 150 mg P kg–1 soil). The 32P isotope dilution technique was utilised to determine the proportion of P in the plant taken up from the P fertilizer treatments. Wheat was grown on an acid loamy sand Dystric Eutrocrepts and harvested 6 weeks after planting. Results on total P uptake and the RAE of the P fertilizer sources tested indicated that the addition of 50 mg P kg–1 soil as TSP was adequate in supplying P to the 6-week-old wheat plants as compared to PR and sewage sludge. Intermediate values were obtained for the mixtures. Similar responses were observed for the high P rate. For a given P rate, phosphorus uptake from PR and SL in presence of TSP was higher than P uptake from these sources alone, indicating an enhancement effect of TSP on the effectiveness of these non-readily available sources. With respect to P uptake from PR applied alone, the relative increases in P uptake from PR due to TSP influence were 52 and 67% for the low and high P rates, respectively. The relative increases in P uptake from SL due to TSP when compared to P uptake from SL alone were 102 and 59% for the low and high P rates of application. Application of a water-soluble P fertilizer together with a non-readily available P source shows an enhancement on the P uptake from the non-readily available P source by the wheat plants. In this experiment the estimated enhancement effects are very likely underestimated.  相似文献   

8.
Twelve granular partially acidulated phosphate rock (PAPR) fertilizers were compared with unacidulated phosphate rocks (PR) and superphosphate at five rates of total P in the presence and absence of supplementary sulfate and plant residue recycling treatments in a long-term green-house experiment with lucerne (Medicago sativa L., cv. CUF101). The PAPRs were prepared from two PRs (Christmas Is. A grade and Duchess, Queensland) and acidulated at two rates (25% and 50% on an H2SO4 to single superphosphate basis) with either H2SO4 or H3PO4. Six harvests (each bulked from three cuttings) were collected over a 2-year period. It was generally found that lucerne response to PAPRs depended closely on their water-soluble plus citrate-soluble P contents which increased with increased degree of acidulation. The H3PO4 tended to yield more soluble P on acidulation of PR than H2SO4 and acidulation of Christmas Is. PR yielded more soluble P than did acidulation of Duchess PR. There was little evidence for enhanced availability of P due to action of the triple point solution in hydrolyzing granules on residual PR in those granules.  相似文献   

9.
PAPR was made by partial acidulation of North Carolina phosphate rock with H3PO4. The PAPRs were incubated in bands in columns of two soils of contrasting P retention. The columns were sampled after freezing and sectioning with a cryomicrotome. The movement of P in soil incubated with33P-labelled PAPR was followed by autoradiography of polished epoxy impregnated sections of the freeze-dried soil column. PAPR solubility was also studied by a sequential dialysis process using distilled deionised water. The acid solution resulting from the dissolution of monocalcium phosphate (MCP) in PAPR moved into the surrounding soil, solubilizing soil minerals and creating a low-pH front with a high concentration of P. Depending on the soil, phosphorus moved 6–14 mm away from the fertilizer/soil interface by mass flow and diffusion in two days. The increase in 0.5 M NaOH extractable P above that of untreated soil showed a maximum at the same position as the pH minimum in the soil. In both soils, the total P movement from the fertilizer band after a two day period for 50% PAPR was comparable to that for 100% acidulation (triple superphosphate), indicating that acidulations above 50% did not necessarily increase the movement of soluble P from the fertilizer pellet. Variations in pH in the fertilizer-affected soil could be explained by the net balance of acidity resulting from incoming acid P solution and release of OH during P sorption. The rock residue exhibited a transient loss in solubility which was reversed on subsequent dissolution, suggesting a possible surface alteration.  相似文献   

10.
The effect of additon of reactive phosphate rock (RPR — North Carolina) on the degree of acidulation of unreactive phosphate rocks (PRs — Nauru and Christmas Island A) during the manufacture of single superphosphate (SSP) was examined using32P in isotopic dilution studies. Acidulation of unreactive PR during SSP manufacture continued through denning, granulation and drying. Even after 3 hours drying, between 20 and 30% of the total P remained as free phosphoric acid in the reaction mixture. The addition of North Carolina phosphate rock (NCPR) to ex-den SSP reaction mixture (3:7 NCPR:SSP reaction mixture) preferentially consumed the free phosphoric acid remaining in the reaction mixture. This resulted in reduced acidulation of the unreactive PR in the reaction mixture and partial acidulation (10–23%) of the RPR. Hence the SSP-RPR mixture contains more residual, unreactive PR than is present in SSP.The extent of partial acidulation of the RPR when mixed with SSP was determined by the nature of free acid remaining in the SSP reaction mixture, which in turn is affected by the type of unreactive PR used for SSP manufacture. The free acid in the Christmas Island A reaction mixture contained approximately 8 and 12 times as much Fe and Al respectively as that in the Nauru reaction mixture, and was only half as effective at converting the P in RPR to soluble P. Unless made with extended denning times and carefully chosen PR, SSP-RPR mixtures can contain (a) undesirable amounts of unreactive PR residues, and (b) low quality partially acidulated RPR, both of which have low agronomic value.  相似文献   

11.
Isotope dilution techniques were used in a glasshouse experiment to compare seven P sources for oil palm seedlings grown on Rengam series soil (Typic Paleudult). The P sources were triple superphosphate (TSP) and six phosphate rocks from North Carolina, USA (NCPR), Tunisia (Gafsa PR), Jordan (JPR), Morocco (MPR), Christmas Island (CIPR) and China (CPR). The percent P derived from fertilisers (%PdfF) in the 3, 6, 9 and 12 months of growth ranged from 81% to 99%, indicating the poor P supplying power of the soil used. TSP was far superior than PR in supplying the required P at all times of measurement. Total amount of P taken up during the 12 months growing period was equivalent to 15.0% of the added P as TSP, it was 5.2% from NCPR, 4.2% from JPR, 4.1% from MPR, 3.2% from GPR, 4% from CIPR and 2.2% from CPR. The PR effectiveness based on the amounts of fertilizer P taken up by the oil palm seedlings at 12 months of growth was in the sequence of triple superphosphate > North Carolina PR > Gafsa PR Jordan PR Morocco PR Christmas Island PR > China PR. This was due to the reactivity of these P sources when applied into the soil, triple superphosphate being water soluble is immediately available. PR sources reacted with the soil solution with time, making P slowly available. PR solubilised by neutral ammonium citrate (NAC) expressed as percentage of rock was shown to correlate better than 2% citric acid and 2% formic acid with plant P uptake. Thus this method of extracting P from PR can be used as a basis for comparing PR effectiveness to oil palm seedlings.  相似文献   

12.
Controlled-release phosphate fertilizers include phosphate rocks (PRs) for direct application, partially acidulated phosphate rocks (PAPRs) and thermal phosphates. Phosphate rocks contain apatite as the main P containing mineral, the composition and the chemical nature of which vary between PRs. Based on the solubility in chemical extractants PRs are broadly grouped into ‘reactive’ and ‘unreactive’. The ‘reactivity’ of PRs is influenced strongly by the extent of carbonate substitution for phosphate in the apatite minerals. Under certain soil and climatic conditions reactive PRs (RPRs) can be used as a source of P for direct application. Partially acidulated phosphate rocks (PAPRs) are produced either by direct partial acidulation of PRs with mineral acids or by mixing PRs with fully acidulated superphosphate reaction mixtures. Partial acidulation of PRs with H3PO4 generally results in higher water soluble P contents than those acidulated with H2SO4. Mixing of RPRs with superphosphate reaction mixtures sometimes results in the preferential consumption of free acid and thereby increases the amounts of residual unreacted PRs. Thermal phosphates are produced by either heating PRs below melting point both in the presence and the absence of silica (calcined phosphates) or heating PRs with silica above melting point (fused phosphate). These phosphates are alkaline in nature and hence suitable for acidic soils.  相似文献   

13.
The agronomic effectiveness of P fertilizers, as sources of phosphorus for crops, was evaluated using the quantities, Pf, of phosphorus taken up byLolium perenne grown on 14 soils during greenhouse experiments in pot cultures. The Pf quantities were determined using32P-labelled fertilizers. Data were analysed using a new concept: the Isotopic Relative Agronomic Effectiveness (IRAE). The IRAE value was defined as the ratio of the Pf quantity, taken up by a crop, of a tested fertilizer over the Pf quantity, taken up by a crop, of a fertilizer used as standard. In our experiments diammonium phosphate (DAP) was used as standard P fertilizer and two rock phosphates, the North Carolina rock phosphate (NCPR) and a calcium-iron-aluminium phosphate (Phospal), were tested. As a linear relationship between Pf(NCPR) quantities and Pf(DAP) quantities was obtained, with r2 = 0.95, when the application rates increased from 15 mgP (kg soil)–1 to 200 mgP (kg soil)–1, it is conciuded that IRAE values for a given fertilizer, other than the standard fertilizer, could be determined with a single rate of application. As regards soil pH in the range 4.7 to 8.2 the IRAENCPR is related to soil pH by a curvilinear relationship: log IRAENCPR = –(0.44) pH + 4.05 with r2 = 0.89. The average of IRAEphospal values was 0.15 with a standard error = 7% irrespective of soil pH. Then a logarithmic relationship was obtained between IRAE values of the two tested fertilizers and their water P-solubility determined at the soil pH where they were applied.  相似文献   

14.
The chemical and mineralogical characteristics of two major kinds of phosphate rock (PR) deposits identified in the Lau group, eastern Fiji, were investigated before and after acidulation and calcination. X-ray diffraction analyses of the Lau PRs showed the presence of Ca and Al rich phases of phosphate minerals. The oolitic material consisted of dominant amounts of fluorohydroxyapatite and only subordinate amounts of crandallite whilst the phosphatic clay consisted almost entirely of crandallite. Acidulation of the PRs caused a marked increase in water, citric and formic acid extractable-P. However the amounts extracted were almost 10–15 times less than that released by a reference North Carolina PR. Of the two types of PR found in Fiji, the apatite rich oolitic material released 8–10 times more extractable P than phosphatic clays following acidulation. Calcination of crandallite rich phosphatic clay at 800°C caused a small but significant increase in extractable P; but, the effect was less marked than that of acidulation, suggesting that the small amounts of apatite minerals present in the phosphatic clay have a greater influence following acidulation on available P than crandallite.  相似文献   

15.
Part I of this study showed that the plant availability of P from a reactive phosphate rock (PR), North Carolina PR, partially acidulated with phosphoric acid (Phos-PAPR) increased with decreasing soil pH from pH 6.1 to 5.1, whereas availability from a blend of similarly reactive PRs partially acidulated with sulphuric acid (SA-PAPR) changed little. The present study was carried out to explain the above results. Phosphate sorption maximum of soil as a function of soil pH was determined. Soil samples obtained at the completion of the pot experiment [5] were analysed for inorganic P fractions, and the amounts of PR dissolved from the PAPRs were determined. A leaching study, simulating pot experiment conditions, was conducted to determine the changes in the chemical composition and the spatial distribution of P, S and Ca in the fertilizer residues. The properties of the PAPRs were further characterised by sequential extraction of the fertilizers. Phosphate sorption isotherms indicated a smaller amount of P in solution at lower pH values, which suggested reduced P availability with decreasing soil pH. Dissolution of the residual PR-P was generally greater in Phos-PAPR treatment than in PR applied directly or in the SA-PAPR treatment. PR-P dissolution in Phos-PAPR increased with decreasing pH but not in SA-PAPR. Chemical, electron microprobe, X-ray micro-analysis and X-ray powder diffraction studies of the fertilizer residues obtained from the leaching and sequential extraction experiments showed rapid dissolution of the Ca(H2PO4)2 phase of the fertilizers but the CaSO4.XH2O persisting as a cementing phase between the PR particles. The CaSO4.XH2O which intially existed mostly in an anhydrous form changed to gypsum. It was concluded that the dissolution of PR-P in the SA-PAPR was impeded by the presence of CaSO4.XH2O acting as a physical barrier and also by providing higher Ca in solution than that would exist in a saturated solution of the apatites. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Ground samples of Nauru (N), Christmas Island A (X), Jordan (J) or North Carolina (NC) phosphate rocks (PRs) were acidulated with32P spiked sulphuric acid to produce single superphosphate (SSP) reaction mixtures. Subsequently, single superphosphatereactive phosphate rock (SSP-RPR) mixtures were manufactured by adding reactive phosphate rock (RPR) as either ground or unground NCPR or ground JPR to SSP reaction mixtures that had been denned for either 22 or 47 minutes after acid addition. The solubility of P in the final SSP-RPR products was assessed either by extraction with water, 2% citric acid, 2% formic acid or 1M neutral ammonium citrate (NAC), or by calculation of the exchangeable P content of the fertilizer by isotopic dilution techniques. The measurement of exchangeable P allowed calculation of the amounts of acidulated P in the ex-den SSP and the amount of RPR P acidulated on addition to ex-den SSP containing free phosphoric acid.Among the PRs used for SSP manufacture, the highest degree of acidulation at the ex-den stage was obtained for NCPR (92%) and the lowest was obtained for XPR (75%). As a consequence, the presence of XPR in the SSP reaction mixture decreased the amount of exchangeable P in the SSP-RPR mixtures. Whereas initially the conversion of PR P increased with time of acidulation at 22 minutes and 47 minutes (i.e. the time of addition of RPR) the differences in the degree of acidulation of PR in the ex-den SSP were not large and hence had no significant effect on the extractability of P in the SSP-RPR mixtures.The nature of the RPR added to the ex-den SSP reaction mixture had a significant effect on the solubility of P in the SSP-RPR mixtures. SSP-RPR mixtures with added unground NCPR or ground JPR had lower P solubility than when ground NCPR was added. RPR P constituted between 38 and 46% of the total P in the SSP-RPR mixtures and at acid/PR (A/R) ratios of 0.60 to 0.70, between 28 to 49% of the RPR P was acidulated by the free acid in the SSP reaction mixture during manufacture.The results also indicate that RPR mixtures made using ex-den SSP made from unreactive PRs will always contain more unreactive PR residue than those made with mature SSP. However, given the practical difficulties of producing the SSP-RPR mixtures with mature SSP, denning times should be extended for as long as practicably possible.  相似文献   

17.
A greenhouse experiment was conducted to evaluate varietal differences in the uptake and availability of P from Gafsa phosphate rock (PR) to five cowpea cultivars grown in a low-P Paleustult soil from Ghana, using the A value technique. The32P radioisotope used as a tracer was32P-labelled triple superphosphate (TSP). Each cultivar received sole or a combined application of the two fertilizers (TSP, PR). From these treatments it was possible to estimate for each cultivar, AR + AS, AS and by difference AR (AR and AS stand for A values for phosphate rock and soil, respectively). Using this approach we measured significant genotypic differences in P uptake from PR and AR values. The ranking of the cultivars in P uptake from PR was the same as for AR, i.e. Asontem > Vallenga > Soronko > IT81D-1137 > Amantin. Similarly, ranking for uptake from soil P was the same as AS, i.e. Vallenga, Soronko, IT81D-1137, Asontem and Amantin. Thus although PR could not be labelled directly, using the A value approach it was possible to distinguish between P availability from PR and soil to the plant. The recoveries of applied TSP ranged from 8.0% to 9.4% and those of PR from 2.3% to 3%.The other advantage of the A value method is that it made it possible for the different genotypes tested to be compared directly in units of a standard fertilizer, TSP in this case. Thus for Vallenga in this soil 3.01 kg of P in Gafsa PR was capable of supplying the same amount of P that could be supplied by 1 kg P of TSP; whereas for Amantin a higher amount i.e. 3.5 kg P as Gafsa PR was needed. This information is useful for adjusting application rates to be recommended for different P fertilizer sources in field trials so as to achieve similar effects.  相似文献   

18.
Agronomic evaluation of modified phosphate rock products   总被引:1,自引:0,他引:1  
Phosphorus (P) is critically needed to improve the soil fertility for crop production in large areas of developing countries. The high cost of conventional, water-soluble P fertilizers constrains their use by resource-poor farmers. Finely ground phosphate rock (PR) has been tested and used as a direct application fertilizer on tropical acid soils as a low-cost alternative where indigenous deposits of PR are located. However, direct application of PR with low reactivity or with inappropriate soil/crop combinations does not always give satisfactory results. Partial acidulation of PR (PAPR) or compaction with triple superphosphate (PR + TSP) or single superphosphate (PR + SSP) represent technologies that can be used to produce highly effective P fertilizers from those indigenous deposits. Numerous field trials conducted by IFDC in Asia, sub-Saharan Africa, and Latin America have demonstrated that PAPR at 40-50% acidulation with H2SO4 or at 20% with H3PO4 approaches the effectiveness of SSP or TSP in certain tropical soils and crops. This paper discusses how the agronomic effectiveness of PAPR is affected by mineralogical composition and reactivity of PR used and by soil properties and soil reactions. The paper also indicates that if a PR has high Fe2O3 + Al2O3 content, it may not be suitable for PAPR processing because of the reversion of water-soluble P to water-insoluble P during the PAPR manufacturing process. Under these conditions, compaction of PR with water-soluble P fertilizers (e.g. SSP, TSP) at P ratio of approximately 50:50 can be agronomically and economically attractive for utilizing the indigenous PRs in developing countries.  相似文献   

19.
Field experiments were conducted in Niger with pearl millet (Pennisetum glaucum [L] R. Br.) in which the crop was fertilized with phosphate rock (PR) from two deposits from Niger (Tahoua and Parc W). The PR was applied either as ground rock or as partially acidulated phosphate rock (PAPR) and was compared to water soluble sources (TSP and SSP) in terms of millet yield response. The ability of five soil testing procedures (Bray P1, Bray P2, Mehlich 1, Olsen, and water extraction) to establish P sufficiency levels for millet was tested. The results of all soil testing methods were highly correlated amongst each other for the treatments receiving water-soluble fertilizers or PAPRs. None of the soil testing procedures which were evaluated was able to accurately measure available P when PRs were applied. Sufficiency levels were calculated for the PAPR and water-soluble fertilizers using nonlinear regression analysis and a graphic procedure for each of the P soil testing methods. The Bray P1 method appeared to be the most reliable procedure and was used to study the effect of accumulated total or total water + citrate-soluble P rates on final P availability. A single quadratic function was able to describe this effect when the P rates were expressed as water + citrate-soluble P for both PAPRs and water-soluble fertilizers independently of the P fertilizer source.  相似文献   

20.
Phosphorus (P) is needed in large areas of developing countries toimprove soil fertility for crop production. The use of phosphate rock (PR) isan alternative to costly soluble P fertilizers, but it is ineffective usuallyin non-acid soils unless it is modified i.e. partially acidulated (PAPR). Alaboratory incubation study using the isotopic exchange kinetic method of32P and field experiments were undertaken on a neutral Ferralsol ofCuba to evaluate the effectiveness of PAPRs as fertilizers for common bean(Phaseolus vulgaris, L.). Sulfuric-acid based PAPR using40%, 50% and 60% of the acid required to produce singlesuperphosphate were studied. In the laboratory experiment Trinidad de GuedesPAPR was effective in providing P to the soil, through increases inisotopicallyexchangeable P and the percentage of P derived from fertilizer (%Pdff). In the three field experiments carried out to compare the P sources,yields of common bean were increased by PAPR, though the response was less thanwith triple superphosphate (TSP). The relative agronomic effectiveness (RAE) ofPAPR was greater than that of unacidulated PR. Taking into account the RAEvalues and the current cost of the P sources, the choice of Trinidad de GuedesPAPR instead of TSP could be economic, although the RAE value for PAPR waslowerthan that of TSP. This result indicates that PAPR could be used in thesoil understudy to obtain the best economic return. DM yield, P uptake and grain yield ofcommon bean were significantly increased by applying P as 50% PAPR. Lowcost improvement of the agronomic value of PR can be achieved by partialacidulation, so this modification of the phosphate rock show promise forutilization of PR reserves indigenous to developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号