首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以微电解技术为核心,耦合Fenton氧化-絮凝沉淀工艺对焦化废水进行强化预处理实验。结果表明,在最佳反应条件下,微电解反应对焦化废水COD的去除率达到20.2%,反应后系统Fe2+可达到410 mg/L,而耦合Fenton氧化-絮凝沉淀后对COD和挥发酚的去除率平均分别为37%和34%,B/C指标提高了50%,平均达到0.39,有效提高了焦化废水可生化性,但对氨氮去除效果不明显。  相似文献   

2.
探究了破乳混凝沉淀预处理结合微电解耦合Fenton氧化工艺对煤层气产出水的降解效果。结果表明,微电解耦合Fenton氧化工艺,在微电解pH为3.0,曝气强度为150 L/h,Fenton氧化反应pH为3.5,H2O2投加量为800mg/L的条件下,微电解COD去除率为66.85%,Fenton氧化反应COD去除率为60.30%,综合COD去除率达86.84%,整体工艺最终出水COD为174.21 mg/L,悬浮物质量浓度为2.64 mg/L,石油类质量浓度为1.21 mg/L,整体工艺的悬浮物去除率为99.01%,石油类去除率为97.40%,COD去除率为93.14%,实现了煤层气产出废水的高效处理。  相似文献   

3.
程高峰  江成  方立才 《广州化工》2012,40(15):179-181
采用铁炭微电解+Fenton氧化+混凝沉淀的组合工艺对吡唑酮母液废水进行预处理试验,探讨各反应条件和工艺参数对COD去除效果的影响。结果表明:组合工艺对COD的总去除率为48.70%。可大幅减轻后续生化处理负荷,为系统的稳定运行创造条件。  相似文献   

4.
采用Fe/C微电解与Fenton协同氧化-混凝沉淀-A/O组合工艺对蒽醌类染料废水进行处理,研究了各处理单元的优化反应条件。结果表明,在Fe/C微电解与Fenton协同氧化处理单元,当H_2O_2投加量为3 mL/L、HRT为100min、pH为3时,单级COD和色度去除率分别为80.67%和92.73%,BOD5/COD由初始的0.07升高至0.45;在混凝沉淀单元,当pH为8,PAC、PAM的投加量分别为200、2 mg/L,沉淀时间为30 min时,单级COD和色度去除率分别为65.41%和88.33%,BOD5/COD提高至0.57;通过后续生化处理后,最终出水的COD为68 mg/L,色度为30倍,总去除率分别达到99.01%和99.82%,出水NH_4~+-N、TN、TP的质量浓度分别为3.65、19.22、0.38 mg/L,出水水质均达到了GB 4287-2012排放标准。  相似文献   

5.
采用铁碳微电解+催化氧化+混凝沉淀预处理工艺处理高浓度废水后,利用混凝沉淀+水解酸化+A/O接触氧化工艺处理综合废水,预处理规模为4.25 m~3/h,总处理量为5 m~3/h。运行实践表明:预处理工艺可有效降低高浓度废水的COD、NH_3-N,去除率分别达到64.0%和49.3%,整套工艺处理出水水质达到接管要求。  相似文献   

6.
针对某医药中间体废水成分复杂,有机物浓度高,具有生物抑制性,废水可生化性差等特点,对其进行了铁碳微电解联合Fenton氧化-混凝沉淀预处理试验研究。通过正交试验进行了微电解过程中铁碳比、反应停留时间、pH、铁粉投加量等参数的优化,COD的去除率为29.1%。结合后续Fenton氧化与混凝沉淀试验,当H2O2投加量为8%,适当调节混凝pH,整个预处理系统出水COD去除率达45.0%,总磷的去除率达77.1%,盐度去除率为24.8%,色度去除率高达95%,可生化性提高至0.29,为后续综合污水的生物处理提供了有利条件。  相似文献   

7.
对某颜料企业高浓度洗涤废水进行了混凝沉淀、微电解-Fenton氧化的处理研究。结果表明,在pH=12,PAC投加量为250 mg/L时,COD、LAS、SS去除率分别为47.8%、47%、52%。微电解-Fenton氧化的最佳条件为:铸铁粉投加量为0.3 g/L,微电解反应时间为1 h,双氧水投加量为10 mL/L,Fenton氧化时间为3 h。研究发现将混凝沉淀置于微电解-Fenton氧化前可提高处理效率,COD、LAS总去除率分别高达77.9%、98%。  相似文献   

8.
铁炭微电解/Fenton氧化预处理高浓度煤化工废水的研究   总被引:3,自引:1,他引:2  
采用铁炭微电解/Fenton氧化组合工艺预处理高浓度煤化工废水,研究了工艺条件对COD去除率的影响。结果表明,铁炭床微电解的最佳运行条件为:进水pH=2,反应时间为20 min;Fenton氧化的最佳条件为:进水pH=4,30%H2O2投加量为3 mL/L,反应时间为60 min。在此运行条件下,COD总去除率可以达到60%~70%,其中微电解反应床COD去除率为40%~47%。采用该工艺预处理高浓度煤化工废水,降低了后续生物处理的负荷,同时不会引起铁炭床的钝化和板结。  相似文献   

9.
对不同工艺废水采用物化方法分质预处理后,利用CASS工艺处理综合废水,设计处理量为400 m~3/d。运行实践表明:三效蒸发对COD、氯化物、总磷、甲苯、氨氮等去除率可达到91.5%、98.1%、98.0%、87.3%、99.1%,铁碳微电解—Fenton氧化—混凝沉淀组合工艺对甲苯的去除率可达到96.3%,整个工艺处理出水COD低于82 mg/L,氯化物低于97 mg/L,总磷低于1.5 mg/L,甲苯低于0.32 mg/L,氨氮低于25 mg/L,出水水质达到接管要求。  相似文献   

10.
电镀废水是一种典型的难降解废水,可生化性差,需采用物化法进行处理。取混凝沉淀后的废水进行研究,采用铁炭微电解-Fenton法进行处理。结果表明:混凝沉淀预处理电镀废水后,采用该组合工艺,能很好地降低废水中难降解有机物的浓度及除色度。铁炭微电解反应的最佳pH值为3~4,最佳停留时间为60~90min。Fenton反应的初始pH值为3~4较合适;反应时间为60min时,COD的去除率接近最大值;H2O2的最佳投加量为10%。  相似文献   

11.
采用Fe/C微电解-Fenton氧化-混凝沉淀-生化法组合工艺处理松节油加工废水,首选通过正交和单因素实验,确定Fe/C微电解、Fenton氧化、混凝沉淀等工艺运行的最佳条件,考察COD的去除效果及BOD5/CODCr比值的改变,探讨废水的可生化性的改善;然后通过BAF工艺进行生化处理,确定工艺影响参数,考察废水达标排放的可行性. 结果表明,在铁屑投加量为100 g/L,Fe/C质量比为1.5:1,H2O2投加量为40 mL/L,PAM投加量为8 mg/L时,废水经Fe/C微电解、Fenton氧化、混凝沉淀等工艺预处理后出水COD为200~450 mg/L,COD去除率达98%,BOD5/CODCr比值由0.13提高到0.64,满足后续生化处理要求;生化处理单元采用曝气生物滤池,在水力停留时间为5 h、DO浓度为2~3 mg/L,处理后出水COD、动植物油和色度为50~90, 3~10和30~50 mg/L时,出水水质达到《污水综合排放标准》(GB8978-1996)一级标准.  相似文献   

12.
采用酸析+铁炭微电解-Fenton氧化预处理印染开纤废水,研究了工艺条件对COD去除率的影响。结果表明,酸析的最佳运行条件:pH=3;铁炭微电解的最佳运行条件为:进水pH=2,反应时间2小时;Fenton氧化进水pH=3,反应时间为60 min,30%浓度H_2O_2最佳投加量2.5 m L/L。在此运行条件下,COD总去除率可以达到94.5%,废水的B/C比由原来的0.02提升至0.25。采用该工艺预处理开纤废水,有效降低了后续生化处理的负荷,提高了废水的可生化性。  相似文献   

13.
分别采用混凝和Fenton对医药中间体废水进行预处理,探究了混凝剂的种类,Fenton反应的p H、反应过程中H2O2和Fe2+的摩尔比等因素对医药中间体废水预处理的影响,在适宜参数条件下比较了3种联合预处理方法对COD的去除效率。结果表明,最适混凝剂为聚合氯化铝铁(PAFC),其COD去除率为14.34%;Fenton氧化的适宜反应条件为:初始p H=3.5,n(H2O2)/n(Fe2+)为4。适宜条件下经过2 h的Fenton反应,COD去除量为5.675 g/L,去除率达26.03%。三者联合预处理效果顺序为2级Fenton混凝+FentonFenton+混凝,其中混凝+Fenton去除率为33.49%,二级Fenton为41.74%。  相似文献   

14.
《应用化工》2022,(7):1673-1678
采用铁炭微电解法、Fenton超声氧化法、铁炭微电解/Fenton超声氧化联用技术对HMX生产废水进行了处理,考察了不同实验因素对废水COD去除率的影响规律,得到相应的最佳工艺参数和联用工艺处理效果。结果表明,铁炭微电解法处理HMX废水的最佳工艺条件为:反应时间50~60 min,反应温度15~20℃,初始pH值3~4,铁炭和废水料液比1∶1,此条件下的COD去除率可达58.12%;Fenton超声氧化法处理HMX废水的最佳工艺条件为:超声时间30 min,H_2O_2投料量0.24 mol/L,Fe(2+)投料量0.023 mol/L,超声频率45 kHz,超声功率75%,此条件下的COD去除率可达85.51%;铁炭微电解-Fenton超声氧化联用工艺处理HMX废水,COD去除率高达96.69%,比单一采用铁炭微电解法和Fenton超声氧化法分别高38.57%和11.18%,联用工艺处理HMX废水优于单一处理效果,优势显著。  相似文献   

15.
采用铁炭微电解法、Fenton超声氧化法、铁炭微电解/Fenton超声氧化联用技术对HMX生产废水进行了处理,考察了不同实验因素对废水COD去除率的影响规律,得到相应的最佳工艺参数和联用工艺处理效果。结果表明,铁炭微电解法处理HMX废水的最佳工艺条件为:反应时间50~60 min,反应温度15~20℃,初始pH值3~4,铁炭和废水料液比1∶1,此条件下的COD去除率可达58.12%;Fenton超声氧化法处理HMX废水的最佳工艺条件为:超声时间30 min,H_2O_2投料量0.24 mol/L,Fe~(2+)投料量0.023 mol/L,超声频率45 kHz,超声功率75%,此条件下的COD去除率可达85.51%;铁炭微电解-Fenton超声氧化联用工艺处理HMX废水,COD去除率高达96.69%,比单一采用铁炭微电解法和Fenton超声氧化法分别高38.57%和11.18%,联用工艺处理HMX废水优于单一处理效果,优势显著。  相似文献   

16.
2,2-二羟甲基丁酸废水的COD及甲醛含量高,采用Formose法聚合+铁碳微电解+Fenton氧化+混凝沉淀+UASB+生物滤池工艺对废水进行处理,介绍了工艺选择依据、工艺流程、工艺参数及效果。调试运行结果表明,该处理工艺对COD、甲醛去除率分别达到98%、99.9%,出水COD≤500 mg/L,甲醛质量浓度≤1.0 mg/L,满足工业园区污水处理厂接管标准。  相似文献   

17.
采用混凝沉淀、铁碳微电解、芬顿氧化3种方法对高浓度制药废水进行降解实验研究,考察了单独方法和组合方法的实际降解效果,并寻找最佳处理效果的组合工艺。结果表明:高浓度抗生素废水,具降难解性,使用单一的物化处理法,去除效果均不佳,最大去除率为21.4%;采用两种组合处理工艺时,去除率最高提高13.9%;铁碳微电解反应结束后调节pH,COD的去除率更高。当原水COD为55 600 mg/L,经过混凝沉淀-铁碳微电解(调pH)-芬顿反应后,COD的去除率接近60%,该组合工艺具有去除率高,反应时间短的特点。  相似文献   

18.
介绍了浙江省某集团化纤有限公司油剂废水预处理工程的设计、调试及运行结果。采用隔油+Fenton氧化+混凝沉淀工艺处理高浓度纺丝油剂废水(COD<30g/L),COD去除率达到了70%以上,油去除率达到了83%。工程实践表明,该预处理工艺能够有效地破乳、沉淀去除该废水中的油污和有机物;当操作参数控制适宜时,处理效率稳定。  相似文献   

19.
分别采用混凝、活性炭吸附、化学氧化处理印染废水,确定最佳的实验条件。设计4种不同的活性炭吸附组合工艺对印染废水进行处理,结果显示,混凝—活性炭吸附的组合工艺脱色率最高达96.85%,COD去除率达96.33%;Fenton氧化和活性炭吸附的先后顺序不同,印染废水的处理效果有很大差别,Fenton氧化和活性炭吸附同时进行的工艺,COD去除率可高达93.26%,明显优于Fenton氧化—活性炭吸附的76.36%和活性炭吸附—Fenton氧化的87.12%。  相似文献   

20.
窗饰喷涂废水COD和氨氮含量较高,以某企业60 m3/d污水处理项目为例,对不同工艺废水采用物化方法(Fenton氧化、中和、混凝沉淀)分质预处理后,利用水解酸化+接触氧化+MBR工艺处理综合废水.实验结果表明,Fenton氧化工艺最佳运行条件为H2O2投加量为80 mL/L,n(H2O2)/n(Fe2+)为3:1,初始pH为3.0,反应时间为80 min.近1 a的工程运行结果表明:物化预处理工艺段对废水中COD的去除率可达40%,有效降低了生物处理工艺的负荷,整个工艺处理出水COD低于200 mg/L,氨氮低于20 mg/L,出水水质达到接管要求,污水处理系统运行成本为19.63元/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号