首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Low temperature co-fired ceramics (LTCC) as an advanced technology for robust assembly of electronic components, has attracted significant attention in a wide application range such as in wireless communication or automotive radar systems. However, accurate designs of micromachined devices operated at high frequencies require substrates with regions of tailored permittivities. Introduction of controlled porosity into the substrate via wet-chemical etching procedure, is a promising approach for permittivity reduction which can be applied to commercially available LTCC without necessitating to alter their composition or sintering process. In the present study, by selective dissolution of celsian phase a very deep porosification (highest reported so far) could be realized while preserving the surface quality. Also, by a careful selection of the etching parameters, the depth of porosification and hence the permittivity reduction can be delicately tailored. Laser ablation inductively coupled plasma mass spectrometry was used for the investigation of chemical compositions of substrates.  相似文献   

2.
The demand to meet advanced substrate requirements in terms of electrical, mechanical, thermal, and dielectric properties has led to an increasing interest in low temperature co-fired ceramics (LTCC). However, LTCC materials suffer from high permittivity. We recently showed that the wet-chemical porosification under acidic conditions allows the reduction of the permittivity of LTCCs in the as-fired state. In the present study, potassium hydroxide solution was employed as an alternative etchant which features a suitable bearing plane for further metallization lines. Various characterization techniques, including scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and electron energy loss spectroscopy were used for investigation of the morphology and chemical composition of the substrates. Three-dimensional information of the surface topography was acquired by means of MeX® Alicona software and the obtained roughness parameters confirmed the advantage of the proposed approach over acid treatment when targeting an enhanced surface quality.  相似文献   

3.
Phase development and changes in crystalline composition of LTCC material during the sintering process were investigated using in-situ X-ray diffraction (XRD) measurements. CeramTape GC was chosen as the chemically simplest model system composed of alumina particles and glass for the investigations. The chemical characterization and microstructural analyses of the tapes sintered with some representative firing profiles were performed by techniques such as (scanning) transmission electron microscope, energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and XRD. Moreover, the porosification behavior of LTCC substrates fired at different peak temperatures was studied. These investigations are important for the subsequent wet chemical etching, representing an approach which allows to reduce locally the permittivity of LTCC tapes. Treatment with a KOH solution shows non-selective etching behavior for all substrates. In addition, highly porous silica structures corresponding to Ca and Al depletion from the anorthite phase were observed in all samples after etching treatment.  相似文献   

4.
Zero Shrinkage of LTCC by Self-Constrained Sintering   总被引:1,自引:0,他引:1  
Low shrinkage in x and y direction and low tolerances of shrinkage are an indispensable precondition for high-density component configuration. Therefore, zero shrinkage sintering technologies as pressure-assisted sintering and sacrificial tapes have been introduced in the low-temperature co-fired ceramics (LTCC) production by different manufacturers. Disadvantages of these methods are high costs of sintering equipment and an additional process step to remove the sacrificial tapes. In this article, newly developed self-constrained sintering methods are presented. The new technology, HeraLock®, delivers LTCC modules with a sintering shrinkage in x and y direction of less than 0.2% and with a shrinkage tolerance of ±0.02% without sacrificial layers and external pressure. Each tape is self-constrained by integration of a layer showing no shrinkage in the sintering temperature range of the LTCC. Large area metallization, integration of channels, cavities and passive electronic components are possible without waviness and camber. Self-constrained laminates are an alternative way to produce zero shrinkage LTCC. They consist of tapes sintering at different temperature intervals. Precondition for a successful production of a self-constrained LTCC laminate is the development of well-adapted material and tapes, respectively. This task is very challenging, because sintering range, high-temperature reactivity and thermal expansion coefficient have to be matched and each tape has to fulfill specific functions in the final component, which requires the tailoring of many properties as permittivity, dielectric loss, mechanical strength, and roughness. A self-constrained laminate is introduced in this article. It consists of inner tapes sintering at especially low-temperature range between 650°C and 720°C and outer tapes with an as-fired surface suitable for thin-film processes.  相似文献   

5.
低温共烧陶瓷技术及其应用   总被引:3,自引:0,他引:3  
低温共烧陶瓷(low temperature co-fired ceramic,LTCC)技术是实现电子元件小型化、片式化的一种理想的封装技术,已成为电子元件集成的主要工艺方式,引起了人们的广泛关注。本文详细叙述了LTCC技术的特点、LTCC材料体系、国内外发展现状以及LTCC技术在电子元件集成中的应用。认为利用LTCC技术来实现电源、有源和无源器件的一体化将是今后信息功能陶瓷发展的一个重要方向。我国应该抓住LTCC技术所面临的前所未有的发展机遇,大力开发具有自主知识产权的LTCC技术,整体提升我国在电子集成领域的技术水平和国际竞争力。  相似文献   

6.
Low-temperature co-fired ceramic (LTCC) with middle permittivity is very crucial to the miniaturization of components. Based on our previous study on the glass/CaTiO3-TiO2 composite, prefiring temperature and particle size of CaTiO3-TiO2 ceramic were optimized in this study to promote the performance of the composites. Comparing with our previous study, after being sintered with 50 wt% glass at 875°C, CaTiO3-TiO2 ceramic prefired at 1275°C with particle size of 3.38 μm showed excellent properties of sintering density = 3.33 g/cm3, εr = 30.2, tan δ = 0.0005 (7 GHz). In addition, surface roughness of green tapes was also improved after optimization. The material has a good chemical stability and shrinkage matching with silver, making it a very promising candidate material for LTCC applications.  相似文献   

7.
In this study, a novel process is presented to generate a defined and homogeneous degree of porosity in fired low temperature co-fired ceramics (LTCC) substrates. For this purpose, a phosphoric-based acid is used which is a standard wet chemical etchant in the MEMS and microelectronic industry for the patterning of aluminium-based conductors and strip lines. Varying the bath temperature between 90 and 130 °C within a time frame of up to 8 h, a maximum penetration depth of 40 μm is achieved. At short etch times up to 5 h, the porosification process is reaction controlled, while at longer exposure times, diffusion-related effects dominate verified by the determination of the corresponding activation energies. In combination with morphological investigations using scanning electron microscopy and micro-X-ray diffraction techniques, it is demonstrated that the anorthite-phase crystallizing during liquid sintering in the vicinity of the Al2O3 grains shows a high dissolvability in phosphoric acid and is very important to enable its penetration into the LTCC body. This surface-near process is very attractive for the realization of selected areas on conventional LTCC substrates having modified dielectric properties, especially for high frequency applications.  相似文献   

8.
《Ceramics International》2019,45(11):13711-13718
In the field of low temperature co-fired ceramic (LTCC), it remains a challenge to design the performance of LTCC with low permittivity less than 5. Here, a novel glass mixture of K-Al-B-Si-O (KABS) and Zn-B-Si-O (ZBS) is introduced as a sintering aid of alumina to obtain ultralow-permittivity glass/Al2O3 composite. Meanwhile, the factors of glass mixture component on microstructure, phase structure and dielectric properties of the composites are considered systematically. The crystal structure measured by X-ray diffraction (XRD) shows that pure crystalline phase of ZnAl2O4 spinel can be attained by tailoring the component of the glass mixture. In case of mass ratio of KABS: ZBS equal to 6:4, it favors to efficiently increase the sintering densification of composite, and significantly benefit the low dielectric loss, good mechanical and thermal performances. In detail, the optimal glass/ceramic composites sintered at 850 °C for 2 h exhibit the bulk density of 2.89 g/cm3, εr of 4.92 at 14 GHz and Q × f of 6873 GHZ, flexural strength of 202 MPa, thermal expansion coefficient of 5.5 ppm/°C. The above study provides an effective approach for preparing the novel composites as a promising candidate for LTCC applications.  相似文献   

9.
Microreaction devices used for chemical synthesis must possess a high resistance against corrosive chemicals. Therefore, microreaction devices were made of glass, steel or ceramics. Photolithographic steps combined with etching processes as well as micropowder blasting or micromilling processes were applied for the formation of appropriate structures. The low temperature cofired ceramics (LTCC) technology combines easy structuring, assembling and packaging techniques with the high chemical resistance of a glass ceramic material. In contrast to the known ceramic technologies, the LTCC technology enables a fast and easy fabrication of microfluidic devices. Here, we present two micromixers made of LTCC and its fluidic characterization. Laser ablation was used for the structuring of green tapes which were layered and cofired to form the micromixers. X-type fluidic barriers were realized inside a squared meandered channel of about 160 mm length. A meandered channel mixer without X-type mixing structures was used as a reference. The pressure drop was measured for aqueous media with various viscosities and the friction factors were calculated. An exponential equation for the friction factor prediction is given. The residence time distribution was determined for both devices by pulse trace experiments and the dispersion model was used to describe the residence time distribution for low Reynolds numbers.  相似文献   

10.
The cold chemical lamination (CCL) is a new technique of bonding ceramic green tapes into one 3D structure. Instead of a standard thermo-compression method, new solvent-based lamination is presented. A film of a special chemical agent is put on the green tape surface. The solvent melts the surface. Then the tapes are stacked. The bonding of the green tapes is made at a room temperature. The new method is used for joining green tapes of the low temperature co-fired ceramics (LTCC). A quality of the bonding depends on the solvent type. The cold chemical lamination is examined on two types of the LTCC tapes: DuPont 943 and DuPont 951. Six types of the solvents are analyzed in the paper. The bonding quality and geometry of the test structures are examined. The lamination quality is investigated by the scanning electron microscope.  相似文献   

11.
Design of LTCC with High Thermal Expansion   总被引:1,自引:0,他引:1  
New applications of low-temperature co-fired ceramics (LTCC), such as pressure sensors or integrated functional layers, require materials that possess higher coefficients of thermal expansion (CTE). To fabricate LTCC with elevated CTE, two methods of material design are examined: firstly, glass ceramic composites (GCC), which consist of >50 vol% glass in the starting powder, and, secondly, glass-bonded ceramics (GBC), where glass is added as a sintering aid only. The CTE of GBC is mainly determined by the crystalline component. For GCC, the CTE can be well predicted, if CTE and elastic data of each phase in the microstructure are known. A nonlinear characteristic of the CTE versus phase composition was found with increasing E crystals/ E glass ratio and absolute CTE difference between the components. The glass composition and glass amount can be used to compensate the fixed properties of a crystalline material in a desired way. However, because the CTE and permittivity of a glass cannot be chosen independently, an optimum glass composition has to be found. For a given LTCC, it is possible to control the devitrification by shifting the glass composition. In this way, the resulting CTE values can be predicted more exactly and tailoring becomes possible. Different LTCC materials, based on the crystalline compounds Ba(La,Nd)2Ti4O12, ZrO2 (Y-TZP), SiO2 (quartz), and specially developed glasses, possessing an elevated CTE of around 10 × 10−6 K−1 while showing permittivity ɛr between 6 and 63, are introduced.  相似文献   

12.
The deformation behaviors of suspended low temperature co-fired ceramic (LTCC) laminates over a cavity and the evolution of open porosity of LTCC are studied for the fabrication of embedded structures in a multi-layer LTCC platform using carbon material. The effects of the type of LTCC materials (self-constrained and unconstrained LTCC), cavity width, laminate thickness, and lamination conditions on the deformation of the suspended LTCC laminate over a cavity are studied. For suspended three-layers and six-layers LTCC laminates over cavity width ranges from 10 to 25 mm, the self-constrained LTCC laminates were more dimensionally stable (sagged by less than ?120 μm) after sintering as compared to the unconstrained LTCC. The evolution of open porosity and the distribution of open pores in the self-constrained LTCC with changes in sintering temperature and laminate thickness are also studied for process optimization.  相似文献   

13.
Multilayer ceramics based on Low-Temperature Co-fired Ceramics (LTCC) are gaining increasing interest in the manufacturing of high-integrated devices for microelectronic and sensor applications. In many applications the parts are exposed to mechanical stresses, which is an important issue regarding the reliability of the device. To predict the lifetime of LTCC multilayer devices, and to extend their application range, basic mechanical data of this material are needed. In this paper metallized LTCC multilayers are investigated concerning their flexural strength, crack growth rate, and lifetime prediction. The results show that the electronic layout concerning the location of vias and metallization has a strong influence on the reliability and lifetime prediction of such co-fired LTCC devices. Mass flow sensors for the measurement of injected fuel quantities, which were fabricated on the basis of LTCC and which are exposed to a stress level of 100 MPa, achieve sufficient lifetimes. Therefore, LTCC is an interesting material to fabricate devices, in which LTCC fulfils the requirements of a functional and structural material.  相似文献   

14.
Vias, cavities, and other cutouts are significant inhomogeneities in low temperature co-fired ceramics (LTCC) tapes and lead to inhomogeneous shrinkage during sintering, which has a negative effect on the quality of the final multilayer device. The influence of such cutouts on the shrinkage behavior of LTCC tapes was investigated by an exact measurement of the geometry before and after sintering and by in situ observations with an optical dilatometer. The investigations show a strong influence of cutouts on the magnitude of shrinkage inhomogeneities. This effect is more pronounced, if the tapes become thinner, the dimensions of the cutouts become larger, or their position becomes less centric. It is shown that the most important factor on the occurrence of shrinkage inhomogeneities in tapes with cutouts is the static friction of the LTCC material on the setter. Severe warpage is caused by interlocking effects, which occur at bumps of the rough setter surface when the inner edges of the cutouts are pulled over the setter. By using a separating agent between the LTCC tape and the setter, the static friction could be minimized, which eliminates the sintering inhomogeneities.  相似文献   

15.
The paper presents the fabrication procedure, microstructure and dielectric properties of the low temperature cofired ceramics (LTCC) based on Zn2SiO4 doped with AlF3, CaB4O7, Li2TiO3 and MgTiO3. The heating microscope studies and differential thermal analysis were used for characterization of the behavior of the green tapes and ceramic samples during heating up to high temperatures. The microstructure and composition were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy and XRD method. The dielectric properties were investigated in three frequency regions: 100 Hz–2 MHz, 90–140 GHz and 0.15–3 THz. The developed materials are promising candidates for the LTCC submillimeter wave applications due to a low sintering temperature of 900–980 °C, good compatibility with silver pastes and good dielectric properties – a low dielectric permittivity of 6–6.8, a relatively low dissipation factor of 0.005–0.008 at 1 THz, and a weak temperature dependence of dielectric permittivity.  相似文献   

16.
Plasma technology is currently being used in innumerable industrial applications. Some of the common uses of this technology include surface cleaning and treatment, sputtering and etching of semiconductor devices, excitation source for chemical analyses, cutting, environmental cleanup, sterilization, and phototherapy. The harsh conditions that these devices must endure require robust refractory materials systems for their fabrication and reliability. Low-temperature cofired ceramic (LTCC) material systems provide a durable and cost-effective platform for the manufacture of such devices, and allow for possible integration into meso-scale microsystems. Our designs are based on RF microstriplines that capacitively couple and ionize small gas discharge sites over the top electrode. In this paper, we have built several iterations of this micro-plasma generating device using LTCC material systems. The impact of electrode ink selection and processing, lamination methods, dielectric layer thickness, and electrode design has been investigated. Several micro-plasma-generating devices were then evaluated for power requirements, output stability, and long-term reliability.  相似文献   

17.
Stereolithography is an additive manufacturing process which makes it possible to fabricate useful complex 3D ceramic parts with a high dimensional resolution and a good surface finish. By coupling the latter process with a second, to deposit an other material, it will be possible to obtain multi-material parts using a hybrid machine. This machine is therefore composed of two additive manufacturing processes: stereolithography and robocasting. During this work, we decided to study ceramic - metal assemblies and more particularly the LTCC materials. These materials have low sintering temperatures, generally less than 1000 °C. The mechanical and electrical properties will be studied of the development of parts with complex and innovative geometries to improve the characteristics of current circuits. Finally, our substrate have an excellent permittivity (εr = 5.05) and dielectric loss (tan δ = 1.8.10−3).  相似文献   

18.
Lamination of green ceramic tapes is one of the most important technological processes in multilayer ceramic technology. Lamination affects the quality of all 3D structures (e.g., channels, chambers, membranes, etc.). Novel chemical methods of lamination reduce the deformation of 3D structures. However, these methods are useless in the fabrication of thin membranes and structures with thick-film electronic components or electric vias. Therefore, thermo-compressive lamination is still the best solution for the lamination of green ceramic tapes. Low-pressure thermo-compressive lamination with an insert material is presented in this paper. The influence of pressure and Low Temperature Cofired Ceramics (LTCC) material on the compressibility and shrinkage of LTCC, as well as the influence of the insert material on deflection and distortion of the membranes are presented and discussed in this paper.  相似文献   

19.
The authors have developed a new LTCC material with characteristics of high dielectric constant (ɛr), high quality factor (Q) and low temperature coefficient of capacitance (TCC). This material can be co-fired with a conventional base LTCC material and buried resistors with low temperature coefficient of resistance (TCR). The base material which consists of Al2O3 filler and glass, has low ɛr of 8.7 at 3 GHz. The newly developed LTCC material, which consists of Ba–(Re)–Ti–O filler, Al2O3 filler, and glass, has the following characteristics of ɛr of 15.1, Q of 900 at 3 GHz, and TCC of −10 ppm/K. The buried resistors consist of RuO2 and glass. Two different LTCC materials, a resistor material and a silver electrode paste can be co-fired as multi-layer substrates and are regarded as a new LTCC system.Constrained sintering could be applied to this LTCC system and the dimensions of substrates could be controlled with quite high accuracy. This LTCC system is expected to contribute to further miniaturization of RF circuits and the reduction of electrical loss.  相似文献   

20.
工业硫化砷渣的性质研究与环境风险分析   总被引:1,自引:0,他引:1  
采用湖北某冶炼厂工业硫化砷渣作为试样,对其腐蚀性、酸度、粒径分布、基本元素组成、表面形态、沉降性能、重金属浸出毒性和元素形态及分布等物理化学性质进行了研究。研究表明,该硫化砷渣中的Cu主要以可氧化态和残余态形式存在,Pb主要以可氧化态形式存在,Zn、Cd主要以酸可提取态和残余态的形式存在。其浸出酸度达到62.55 mg/g,具有很强的腐蚀性。在酸雨条件下,工业硫化砷渣中的重金属形态可以发生转化,易对环境造成二次危害。但是,该废渣中w(As)接近30%,可作为砷原料再利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号