首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Thermally stable elastomeric composites were prepared via melt processing from poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS) and conducting polymer-modified carbon black (CPMCB) additives. CPMCB additives represent a novel thermally stable conductive compound made via “in-situ” deposition of polyaniline or polypyrrole on carbon black particles. Incorporating CPMCB is advantageous to the melt processing of composites, as it reduces the melt viscosity in comparison to the use of pure carbon black. Thermogravimetric analyses (TGA) showed that the composites are thermally stable with no appreciable degradation at temperatures as high as 300°C. In addition, the electrical conductivity of the composites was found to be very stable at high temperatures. Polym. Compos. 25:617–621, 2004. © 2004 Society of Plastics Engineers.  相似文献   

11.
Abstract

It is proposed that a non-polar filler can reduce interfacial energies between polar and non-polar polymers. Experiments have been carried out to test this hypothesis using carbon black as the filler in blends of natural rubber (NR) and a nitrile rubber (NBR) with an acrylonitrile content of 45%. Blends of NR–NBR (70/30) were prepared in an internal mixer with varying amounts of carbon black. The dramatic decrease in domain size on addition of carbon black was nonetheless lower than that predicted. Further experiments showed that the amount of carbon black available at the interface for compatibilisation was influenced by preferential incorporation into the lower viscosity elastomer (NBR). Thus, elastomers of similar viscosity should be added to the mixer prior to the carbon black in order to maximise the amount of ‘free’ unwetted carbon black present when the elastomers are blended together. Blending experiments carried out under these conditions resulted in a morphology close to the prediction based on thermodynamic theory.  相似文献   

12.
Abstract

Elastomeric blends based on SBR and NBR have been prepared, giving emphasis to differences in blend composition. It was observed from dynamic mechanical analysis that the SBR–NBR blends can be compatibilised by addition of 5 pphr dichlorocarbene modified styrene/butadiene rubber. The efficiency of carbon black in uncompatibilised and compatibilised blends was evaluated with reference to their processing characteristics and technological properties and the resistance of the vulcanisates towards thermal and oil aging was analysed. The changes in technological properties have been correlated with variations in crosslink density estimated from stress–strain and swelling behaviour. The swelling studies are also extended to evaluate the reinforcing nature of the filler. The results of the study reveal that compatibilised blends show enhanced mechanical properties in the presence of HAF carbon black in comparison with uncompatibilised samples.  相似文献   

13.
Abstract

Epoxidised natural rubber has been synthesised and used to improve carbon black–natural rubber in the bead masterbatch prepared according to the acid precipitation technique. Scanning electron microscopy showed that carbon black (40 pphr) was well incorporated in the spherical beads. The presence of epoxidised natural rubber latex caused an increase in the amount of unextracted rubber (or bound rubber content) of carbon black–epoxidised natural rubber–natural rubber beads  相似文献   

14.
《Catalysis communications》2003,4(10):499-503
Steam reforming of methanol over Zn-promoted Pt catalyst supported on an electrically conductive carbon black has been investigated after H2 reduction at 873 K. X-ray diffraction measurement showed that Pt–Zn alloy was formed on the carbon black (C). The Zn-promoted Pt/C catalyst showed higher activity and selectivity to CO2 compared with unpromoted Pt/C catalyst. Methyl formate was formed over the Zn-promoted Pt/C catalyst in decomposition of methanol (without water). This suggests that steam reforming of methanol over the Zn-promoted Pt/C catalyst can proceed via methyl formate, which is different from that of the unpromoted Pt/C catalyst.  相似文献   

15.
Conductive submicronic coatings of carbon black (CB)/silica composites have been prepared by a sol–gel process and deposited by spray-coating on glazed porcelain tiles. Stable CB dispersions with surfactant were rheologically characterized to determine the optimum CB-surfactant ratio. The composites were analyzed by Differential Thermal and Thermogravimetric Analysis and Hg-Porosimetry. Thin coatings were thermally treated in the temperature range of 300–500 °C in air atmosphere. The microstructure of the coatings was determined by scanning electron microscopy and the structure evaluated by confocal Raman spectroscopy. The electrical characterization of the samples was carried out using dc intensity–voltage curves. The coatings exhibit good adhesion, high density and homogeneous distribution of the conductive filler (CB) in the insulate matrix (silica) that protects against the thermal degradation of the CB nanoparticles during the sintering process. As consequence, the composite coatings show the lowest resistivity values for CB-based films reported in the literature, with values of ~7 × 10?5 Ωm.  相似文献   

16.
Thermally stable elastomeric composites based on ethylene–propylene–diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via “in situ” deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300°C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5–10 phr depending on the formulation and electrical dc conductivity values in the range of 1 × 10−3 to 1 × 10−2 S cm−1 above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
Abstract

Partial replacement of carbon black (CB) by organically modified montmorillonite (OMMT) in bladder compounds and synergistic effect between OMMT and CB on required properties were studied. X-ray diffraction results revealed intercalation of rubber into OMMT galleries. Mechanical interaction between rubber and filler, mechanical stability in oxidative aging, resistance to permanent set, reduction in permeation to CO2, and resistance to thermal degradation were all in favour of clay containing composites, especially the compound with 45?phr CB and 4?phr OMMT.  相似文献   

18.
This study focuses on a black micro-arc oxidation ceramic coating prepared on the surface of magnesium alloy by the technology of micro-arc oxidation in the electrolyte containing F and Fe3+ as well as its mechanism of F and Fe3+. It needs coatings to experience detail analyses on their thickness, roughness, corrosion resistance, thermal control property, valence states of elements, phase composition, and morphology of coatings, respectively, through coating thickness gauge, roughness tester, electrochemical workstation, AE radiometer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS). Results showed that with the help of F in electrolyte, Fe3+ can be complexed and MgF2 can be obtained in the coating, which reduces the pores on the surface of micro-arc oxidation coating. In addition, Fe3+ in the electrolyte contributes to the preparation of Fe2O3 and Fe3O4 in the coating, which can blacken the surface of the coating. Both F and Fe3+ benefit to improve the corrosion resistance and thermal control performance of micro-arc oxidation coating. There is higher iron oxide in the outer layer but higher fluoride in the inner layer of the coating.  相似文献   

19.
20.
Thermoplastic vulcanisates (TPVs) based on ethylene–vinyl acetate copolymer (EVA)/styrene–butadiene rubber (SBR) blends were prepared by dynamic vulcanisation, with the TPVs being reinforced by carbon black (CB). Experimental results indicated that the mechanical properties of dynamically vulcanised EVA/SBR blends were enhanced remarkably by the incorporation of CB. Morphology study showed that the SBR particles with average diameter of 20?μm were dispersed evenly on the etched surface of EVA/SBR/CB TPVs. The Mullins effect could be observed in the stress–strain curves of EVA/SBR TPVs and EVA/SBR/CB TPVs during the uniaxial loading–unloading cycles. Compared with EVA/SBR TPVs, CB reinforced EVA/SBR TPVs had the relatively higher stress, residual deformation and internal friction loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号