首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
利用油茶果壳制备了一种生物质炭微球,并且对其进行热改性后用于对水中结晶紫的吸附去除研究。BET表征结果表明改性后的炭微球中有较多中孔结构,比表面积可达349.240m~2/g。吸附实验考察了溶液吸附动力学、溶液pH值的影响和等温吸附。实验结果表明在结晶紫溶液的pH为8时其吸附效果最佳,动力学实验结果表明在120min时油茶籽壳生物质炭微球对结晶紫的吸附可达到吸附平衡,且动力学拟合的结果显示其动力学吸附行为更符合拟二级动力学模型。吸附等温线数据较符合Langmuir模型(R20.96),在25℃下,热改性处理后的油茶籽壳生物质炭微球吸附结晶紫的最大吸附量达到了40.1mg/g。  相似文献   

2.
研究了组合改性沸石的最佳制备方法,以及不同改性方式和pH对改性沸石除磷效果的影响。通过吸附动力学与吸附等温线探究其吸附机理并使用扫描电镜对改性前后的沸石进行表征。结果表明,最佳的改性方案为2.0 mol/L NaOH溶液和2.0 mol/L聚合氯化铝(PAC)溶液组合改性。当废水pH=7时该改性沸石除磷效果最佳,此时除磷率为98.74%,其吸附符合准二级动力学方程和Langmuir模型。扫描电镜表征结果表明,碱改性和铝改性均可改变沸石的孔隙结构,增加吸附点位。  相似文献   

3.
《应用化工》2015,(10):1832-1836
以豆渣(BD)为原料,研究了用NaOH(NBD)、乙二胺(EBD)化学改性豆渣作为吸附剂,吸附废水中的重金属离子Pb(Ⅱ)。研究了溶液初始浓度、吸附温度、溶液pH、吸附时间对改性豆渣吸附废水中重金属离子Pb(Ⅱ)吸附性能的影响,由此得出了改性豆渣吸附剂的最佳吸附条件。并对改性豆渣吸附剂吸附Pb(Ⅱ)进行一级动力学与二级动力学拟合,拟合结果表明,该吸附过程更符合二级动力学模型。吸附过程为物理化学吸附行为。改性豆渣吸附剂吸附Pb(Ⅱ)等温线较符合Freundlich方程,吸附过程为多层吸附。热力学参数显示,改性豆渣吸附Pb(Ⅱ)的过程为吸热、自发的过程。实验结果表明,改性豆渣吸附剂对Pb(Ⅱ)的吸附效果明显优于未改性豆渣吸附剂。  相似文献   

4.
《应用化工》2022,(10):1832-1836
以豆渣(BD)为原料,研究了用NaOH(NBD)、乙二胺(EBD)化学改性豆渣作为吸附剂,吸附废水中的重金属离子Pb(Ⅱ)。研究了溶液初始浓度、吸附温度、溶液pH、吸附时间对改性豆渣吸附废水中重金属离子Pb(Ⅱ)吸附性能的影响,由此得出了改性豆渣吸附剂的最佳吸附条件。并对改性豆渣吸附剂吸附Pb(Ⅱ)进行一级动力学与二级动力学拟合,拟合结果表明,该吸附过程更符合二级动力学模型。吸附过程为物理化学吸附行为。改性豆渣吸附剂吸附Pb(Ⅱ)等温线较符合Freundlich方程,吸附过程为多层吸附。热力学参数显示,改性豆渣吸附Pb(Ⅱ)的过程为吸热、自发的过程。实验结果表明,改性豆渣吸附剂对Pb(Ⅱ)的吸附效果明显优于未改性豆渣吸附剂。  相似文献   

5.
以甘蔗渣为原料,通过高温限氧和氧化钙改性制备钙改性甘蔗渣活性炭。研究了钙改性甘蔗渣活性炭对Cr(Ⅵ)吸附的影响因素,并通过吸附等温线模型和吸附动力学,进一步讨论其吸附机理。由实验数据可知,氧化钙改性有利于提高甘蔗渣炭对Cr(Ⅵ)的吸附效果。改性后,甘蔗渣活性炭的最佳吸附条件为:pH=2,吸附时间8h,吸附剂添加量为0.2 g,Cr(Ⅵ)的吸附浓度为20 mg·L~(-1),此时吸附容量达到2.89 mg·g~(-1)。吸附等温模型的拟合结果表明,改性后,甘蔗渣炭对Cr(Ⅵ)的吸附符合Freundlich吸附等温模型。吸附动力学模型拟合结果表明,改性后,甘蔗渣炭对Cr(Ⅵ)的吸附可用Lagergren准二级动力学模型表示,吸附过程存在物理扩散和化学吸附。  相似文献   

6.
以松木屑为原料制备水热炭,并以不同浓度磷酸二氢铵作为活化剂对所制备的水热炭进行改性;通过傅里叶红外光谱、SEM、元素分析等表征所得水热炭。结果显示低浓度活化剂改性水热炭表面积增大,表面含氮官能团增多。探究不同溶液中pH、投加量、吸附时间、溶液初始浓度对水热炭吸附性的影响。结果表明,5%磷酸二氢铵改性水热炭单位吸附量>10%改性水热炭>未改性水热炭;吸附动力学和吸附等温线结果表明,3种吸附剂吸附过程均遵循二阶动力学模型,表明其吸附过程均为化学吸附;同时Langmuir模型能够更好地描述3种吸附剂的吸附过程。  相似文献   

7.
利用HDTMA改性Linde type F(K)沸石吸附处理溶液中的Cr(Ⅵ),探讨了pH值、溶液初始浓度、反应温度和时间对Cr(Ⅵ)吸附效果的影响,同时进行了吸附等温线和吸附动力学的数据模拟。实验结果表明:改性沸石对溶液中Cr(Ⅵ)的去除效果明显优于原始沸石。酸性条件有利于沸石对Cr(Ⅵ)的吸附。吸附数据的拟合结果符合Langmuir吸附等温线和准二级动力学方程。  相似文献   

8.
以壳聚糖和硫脲为原料,经环氧氯丙烷交联,制得硫脲改性壳聚糖颗粒,通过吸附实验考察了pH、吸附时间对Cr(Ⅵ)、Ni2+吸附的影响。结果表明,硫脲壳聚糖颗粒对Ni2+吸附的最佳pH为6,对Cr(Ⅵ)吸附的最佳pH为1,最佳吸附t为2h。利用准一级反应动力学模型和准二级反应动力学模型对实验数据进行拟合,并分别采用Freundlich模型、Langmuir模型对吸附等温线进行拟合。结果表明,吸附符合准二级动力学模型,以化学吸附为主。吸附等温线用Langmuir模型拟合结果最好。在初始质量浓度80mg/L,θ为25℃时,Ni2+,Cr(Ⅵ)的饱和吸附量可达40.98mg/g和33.33mg/g。  相似文献   

9.
碱性改性棕榈生物炭对微囊藻毒素的吸附性能研究   总被引:1,自引:0,他引:1  
《广东化工》2021,48(5)
通过碱活化改性制备棕榈纤维生物炭材料(PB),采用扫描电子显微镜(SEM),对碱性改性棕榈生物炭的结构进行表征,并将该材料用于水体中微囊藻毒素(MC-LR)的高效吸附。采用KOH改性后的棕榈生物炭对MC-LR的吸附性能得到了显著提高,吸附容量达到467.0μg/g。该吸附过程为放热反应,符合Langmuir模型和准二级动力学模型。pH对MC-LR的吸附有重要影响,pH为3时吸附量最大,pH值增加,吸附量显著下降。  相似文献   

10.
稻壳在220℃下水热炭化4 h,制备水热炭(BC),用FeCl3和葡萄糖进行改性,制备氯化铁改性水热炭(FBC)和葡萄糖改性水热炭(GBC).探究了投加量和pH对水热炭吸附苯酚的影响,并对水热炭进行表征,结合吸附动力学和吸附等温线模型研究了吸附机理.结果表明,FBC的比表面积和孔容增大,GBC含氧官能团增多,比表面积增...  相似文献   

11.
通过磺化腐植酸对重金属Ni(Ⅱ)吸附性能的实验,研究了吸附过程中的吸附等温线,探讨了吸附热力学特征和吸附动力学模型。结果表明:在室温条件下(20~25℃),pH为5~6,吸附平衡时间120 min,磺化腐植酸对Ni(Ⅱ)吸附类型符合Freundlich吸附模型,吸附过程可用Ho准二级反应动力学模型描述。  相似文献   

12.
王昱璇  王红  卢平 《化工进展》2019,38(11):5142-5150
在300~700℃下制备了水葫芦炭和玉米秸秆炭,研究了生物质种类、热解温度、溶液初始pH和Zn(Ⅱ)初始浓度对两种生物炭吸附溶液中Zn(Ⅱ)的影响,并结合吸附过程曲线拟合获得了吸附动力学模型。结果表明:随着热解温度的升高,生物炭理化特性发生显著变化,生物炭的挥发分、氧含量、氢含量以及O/C和H/C显著降低,而固定碳、灰分和热值显著升高,生物炭的比表面积、总孔容、微孔容、pH以及KCl等盐类物质均得到了显著增加。随着溶液初始pH增加,生物炭对Zn(Ⅱ)的吸附能力呈现先快速增加然后逐步趋于稳定或稍有下降的趋势,不同生物炭的最大平衡吸附量出现在pH=4~6之间。Zn(Ⅱ)初始浓度<30mg/L时,生物炭对Zn(Ⅱ)平衡吸附量随溶液Zn(Ⅱ)初始浓度的增加呈线性快速增长,而当Zn(Ⅱ)初始浓度>30mg/L,其平衡吸附量增长趋势变缓。在相同Zn(Ⅱ)初始浓度下,随着热解温度的提高,生物炭对溶液中Zn(Ⅱ)平衡吸附量逐渐提高,且在同一热解温度下制备的水葫芦炭对Zn(Ⅱ)的平衡吸附量显著高于玉米秸秆炭。两种生物炭对溶液Zn(Ⅱ)的吸附符合Lagergren准二级动力学模型,其吸附过程均受化学吸附控制,水葫芦炭和玉米秸秆炭对Zn(Ⅱ)吸附机制主要包括含氧官能团的络合作用和无机盐离子的沉淀作用。  相似文献   

13.
分别采用草酸、乙酸、盐酸对花生壳进行酸化改性,制备得到3种生物吸附剂:草酸改性花生壳(OPS)、乙酸改性花生壳(APS)、盐酸改性花生壳(HPS);将其用于吸附酸性橙Ⅱ,考察了改性剂、改性花生壳粒度、吸附时间、酸性橙Ⅱ溶液pH值、改性花生壳投加量及酸性橙Ⅱ溶液初始浓度等因素对吸附率的影响,初步探讨了吸附动力学。结果表明,改性花生壳对酸性橙Ⅱ的吸附能力较未改性花生壳显著提高,其中HPS的吸附效果最好。在改性花生壳粒度为120目、吸附时间为100min、酸性橙Ⅱ溶液pH值为2.3、改性花生壳投加量为10g·L~(-1)、酸性橙Ⅱ溶液初始浓度为50mg·L~(-1)时,OPS、APS和HPS对酸性橙Ⅱ的吸附率分别为88.6%、92.0%和95.4%。吸附动力学研究表明,改性花生壳对酸性橙Ⅱ的吸附行为符合Lagergren准二级动力学模型,吸附过程主要为化学吸附,且吸附速率常数与改性剂酸度有关。  相似文献   

14.
废水中的重金属铜离子(Cu(Ⅱ))会污染水体生态环境,并会通过食物链对人体健康造成潜在危害。生物炭可作为废水中Cu(Ⅱ)去除的有效吸附剂。然而,原状生物炭对Cu(Ⅱ)的吸附量有限,需要对生物炭进行定向改性以提升其去除效果。以废水中的Cu(Ⅱ)为对象,重点论述生物炭的改性方法和吸附机制。结果表明,生物炭的主要改性方法包括化学改性(酸、碱、高分子聚合物改性)、物理改性(球磨和气体活化)、金属改性(铁、锰改性)、矿物质改性和高分子聚合物改性等。改性方法对Cu(Ⅱ)去除效果的次序是:纳米羟基磷灰石改性>含氨基有机酸改性>锰改性>铁改性>碱改性。生物炭吸附Cu(Ⅱ)的主要机制包括孔隙扩散、静电作用、沉淀作用、配位作用、阳离子-π机制、离子交换和还原作用,具体的主导机制取决于生物炭的物化性质和溶液的性质。将来的研究方向包括:采取更为有效的改性方法提高对废水中痕量Cu(Ⅱ)的去除效果;利用先进的仪器和模型计算揭示微观机制;开展动态吸附柱或固定床试验。  相似文献   

15.
改性膨润土对氨氮废水吸附性能的研究   总被引:1,自引:0,他引:1  
用内蒙膨润土及其碱改性膨润土进行模拟氨氮废水的脱氮实验研究。结果表明,在氨氮溶液初始浓度为300 mg/L,pH值为3.0~7.0时,相对于天然膨润土,碱改性膨润土对氨氮的吸附量有了很大提高,其吸附等温线符合Freundlich和Langmuir方程,且对氨氮的吸附动力学符合准一级和准二级吸附动力学模型,说明化学吸附和物理吸附共同起作用;在应用于畜禽废水处理中,碱改性膨润土对氨氮去除率达到91.0%。  相似文献   

16.
骆欣  敖燕环  徐东耀  路坦 《应用化工》2019,(5):1020-1023
采用高温焙烧法制备改性粉煤灰(MFA),考察了改性粉煤灰投加量、初始pH、吸附时间对水中Pb(Ⅱ)吸附效果的影响,通过吸附动力学方程和吸附等温线方程对吸附机理进行了分析。结果表明,在温度30℃,初始Pb(Ⅱ)浓度40 mg/L,MFA投加量2 g/L,pH为5.5,吸附时间为30 min时,Pb(Ⅱ)的吸附率达到97.97%,水中残留的Pb(Ⅱ)浓度低于1.0 mg/L,满足排放标准的要求。吸附动力学符合拟二级动力学方程,吸附等温线符合Freundlich方程,吸附机制为化学吸附。  相似文献   

17.
采用NaOH溶液对粉煤灰进行改性,并研究了粉煤灰和改性粉煤灰对Cu~(2+)的吸附性能。考察了反应时间、吸附剂投加量及溶液pH值对吸附过程的影响,同时研究了粉煤灰和改性粉煤灰吸附Cu~(2+)的动力学和等温线。结果表明:改性后,粉煤灰的吸附性能显著提高。当反应时间为90min、吸附剂投加量为3g、溶液pH值为9时,改性粉煤灰对Cu~(2+)的去除率达到99%以上。粉煤灰和改性粉煤灰对Cu~(2+)的吸附符合拟二级动力学模型和Langmuir吸附等温模型,即符合单分子层吸附理论。  相似文献   

18.
为探明陕南茶叶产区土壤对Ni(Ⅱ)的吸附特性,本文用振荡平衡法研究了陕南茶叶产区典型土壤黄褐土对Ni(Ⅱ)的吸附特性,并用数学模型模拟其吸附动力学过程。结果表明,准一级动力学模型、准二级动力学模型适合于表征Ni(Ⅱ)的吸附动力学特征,其中一级动力学方程模拟效果最好;Freundlich模型能够较好地模拟Ni(Ⅱ)的吸附等温过程。吸附热力学计算模拟结果表明,黄褐土对于镍的吸附反应是个吸热过程,随着吸附反应温度上升,吸附反应越强烈。溶液的酸碱度是影响Ni(Ⅱ)去除效果的一个重要因素,pH8.5时Ni(Ⅱ)几乎完全被去除。对土壤基本理化性质与吸附参数的相关分析说明,土壤有机质含量对重金属Ni(Ⅱ)的吸附起重要作用。该结果可为茶叶产区土壤预防重金属污染提供一定的理论依据。  相似文献   

19.
采用硝酸-高锰酸钾活化法对制备的柚子皮生物炭进行改性处理,并将其作为吸附剂探究了其对亚甲基蓝的吸附性能。通过静态吸附实验考察了亚甲基蓝溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂投加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学、吸附等温线和吸附热力学。实验结果表明,在改性生物炭投加量为0.6 g/L、pH 7、亚甲基蓝溶液浓度为100 mg/L、50℃吸附180 min的条件下,改性生物炭对亚甲基蓝的吸附容量为68.28 mg/g。通过准二级动力学方程和Freundlich方程更好的描述了该吸附过程,同时吸附热力学表明该吸附过程是一个自发吸热过程。  相似文献   

20.
《广东化工》2021,48(6)
采用酸碱、MgCl_2/FeCl_3混合溶液两种方法对椰壳生物炭进行改性,设置不同盐度、温度、pH、腐殖酸、反应时间等理化条件,研究改性椰壳生物炭吸附苯酚的效应,并进行吸附动力学研究。结果表明,两种改性椰壳生物炭对水体中苯酚的吸附效果均比未改性好,吸附速率更快。盐度和温度升高均可促进生物炭对水体中苯酚的吸附;pH在2~11范围内变化,生物炭对苯酚的吸附量先增后降;腐殖酸对吸附影响不大。改性生物炭吸附苯酚废水的最佳理化条件为:盐度5%,温度30℃,pH为酸性或中性。吸附动力学分析结果表明伪二级动力学模型能更好拟合改性椰壳生物炭对苯酚的吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号