首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrody-namic modei was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the modei was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30m long and its inner diameter is 24 mm. It is observed experimentally that the interfacial wave frequency at the inlet is about l to 3 times the frequency of stable slug. The slug frequencies predicted by the modei fit well with Tronconi (1990) modei and the experimental data. The combination of the hydrodynamic modei and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the miniraum frequency of interfacial wave.  相似文献   

2.
A viscous Kelvin-Helmholtz criterion of the interfacial wave instability is proposed in this paper based on the linear stability analysis of a transient one-dimensional two-fluid model. In thismodel, the pressure is evaluated using the local momentum balance rather than the hydrostatic approximation. The criterion predicts well the stability limit of stratified flow in horizontal and nearly horizontal pipes. The experimental and theoretical investigation on the effect of pipe inclination on the interfacial instability are carded out. It is found that the critical liquid height at the onset of interfacial wave instability is insensitive to the pipe inclination. However, the pipe inclination significantly affects critical superficial liquid velocity and wave velocity especially lor low gas velocities.  相似文献   

3.
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.  相似文献   

4.
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.  相似文献   

5.
The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m.s^-1 to 0,96 m.s^-1. For the current small Eoetvoes number liquid-liquid system (EOD=4.77), the dominant effect of interfacial tension and wall-wetting properties of the liquids over the gravity is considered. The approach introduces the closure relationship for the case of turbulent flow m a rough pipe, and attempts to modify the two-fluid model to account for the curved interface. In present flow rates range, wave amplitudes were found small, while interfacial mixing was observed. An adjustable definition for hydraulic diame- ters of two fluids and interfacial friction factor is adopted. The predicted pressure gradient and in situ phase distribution data have been compared with present experimental data and those reported in the literature.  相似文献   

6.
Compared with gas-liquid two-phase flow,oil-gas-water three-phase flow is much more complex. There is immiscible oil-water,whose interaction and dispersion greatly affects the flow characteristics. The slug flow pattern of oil-gas-water three-phase and its flow pattern transition were studied in a 95 m long,51 mm i. d. horizontal pipe. The oil-gas-water three-phase slug flow pattern could be classified into five sub-flow patterns. The slug flow was W/O or O/W one during its transition to roll wave,which was three-layer flow pattern without mixed-phase on the interface. An even larger superficial gas velocity was needed for the transition boundary of slug flow and roll wave flow when the superficial liquid velocity is large. Besides,the region of roll wave flow pattern became smaller. The above-mentioned transition only happened when the water cut of liquid was between 30% and 70%. At the same superficial liquid velocity,there appeared a minimum superficial gas velocity corresponding to the transition of flow pattern when the water cut of liquid was between 40% and 50%.  相似文献   

7.
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic (CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than 0.15 m·s?1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s?1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventual y evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.  相似文献   

8.
In petroleum industry, the slug flow is a fre-quently encountered flow regime in multiphase flowpipeline. For pipeline designers, the liquid slug lengthdistribution is important for the proper design ofdownstream facilities, such as slug catcher and sepa-ration system. However, for its transient and unsteadynature, it is a great challenge for engineers to correctlypredict the flow parameters of slug flow, especiallythe maximum liquid slug length. The unit cell model for slug flow in horizontal…  相似文献   

9.
Experiments were conducted to investigate the flow characteristics in the riser pipe and the suction pipe of airlift pump at a series of air flow rates and submergence ratios by using a high speed camcorder and a Laser Doppler Velocimetry system(LDV). A modified model was developed to predict the performance of airlift pump operating in gas-liquid two-phase flow. The results show that an unstable flow structure composed by a water falling film,a bubbly mixture, a water ascending film appearing alternately in riser pipe dominates the performance of airlift pump at large air flow rates. The bubbly mixture with a strongest capacity for pumping water first increases to its maximum and then slightly decreases. In suction pipe, the average velocity shows a flat profile and increases with increasing submergence ratio. Moreover, the predicted results of modified model are in good agreement with the experimental data in a margin of ± 12%.  相似文献   

10.
A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local varameter measurements in gas-liquid two-phase flows.  相似文献   

11.
王腾 《当代化工》2013,(9):1347-1350
在城市天然气管道的输送中,管道建筑用户相连,中途有流量分出,从途泄流量和输转流量的角度研究,利用计算公式来计算管段的计算流量,确定其压力降,并进行了举例说明,为输气管道的设计工作提供了参考。  相似文献   

12.
The simultaneous flow of water, oil and gas is of practical importance for the oil and gas industry. These three phases are present in varying degrees of concentration in many oil and gas pipelines. In this work, a model has been developed to predict the values of the hold-up and pressure gradient for three-phase stratified flow prevailing in a horizontal pipeline. This information is usually the first step for analyzing the stability of stratified flow and developing transition criteria. The concept of extended velocity has been applied to compute the wall shear stresses in three-phase flow. The effect of process variables such as gas to liquid ratio, pipe diameter, oil viscosity and non-Newtonian character of oil on hold-up and pressure gradient has been studied to simulate the oil well conditions. Structural stability analysis was also carried out to check for the sensitivity of the model.  相似文献   

13.
ABSTRACT

This work presents a complete improved mathematical model of drying in cyclone. The slip condition of the particles on the wall, the heat transfer wall-panicle and the shrinkage of the panicles during the drying process were considered. The mathematical model considers a two-dimensional turbulent gas-particle flow where the panicle phase is treated as a continuum. The momentum equations of both particle and gas phases were written in cylindrical coordinates. The discretized equations were solved by the SIMPLE algorithm. Considering the slip condition to the panicle phase and the shrinkage of the material during the drying process it was revealed a better fitness between numerical and experimental results than the previous model.  相似文献   

14.
This work presents a complete improved mathematical model of drying in cyclone. The slip condition of the particles on the wall, the heat transfer wall-panicle and the shrinkage of the panicles during the drying process were considered. The mathematical model considers a two-dimensional turbulent gas-particle flow where the panicle phase is treated as a continuum. The momentum equations of both particle and gas phases were written in cylindrical coordinates. The discretized equations were solved by the SIMPLE algorithm. Considering the slip condition to the panicle phase and the shrinkage of the material during the drying process it was revealed a better fitness between numerical and experimental results than the previous model.  相似文献   

15.
The flow characteristics of the blade unit of a tridimensional rotational flow sieve tray were investigated. First, the flow patterns are defined under different liquid arrangement methods. They are bilateral film flow, continuous perforated flow, and dispersion-mixing flow in overflow distribution, film and jet flow and jet and mixed flow in spray distribution. Second, the time and frequency domain analysis of the differential pressure pulsation signal in the blade unit is carried out, the main frequencies range is 2.0−5.5 Hz. The influence of perforation and mixing intensity on the flow pattern transition is clarified. Third, the rotational flow ratio of the gas–liquid phase is measured, the gas phase rotational flow range is 0.55–0.78, and the liquid phase range is 0.15–0.42. The influence of the operating conditions on the distribution of the rotational and perforated flow is investigated. Finally, a prediction model for the rotational flow ratio is proposed.  相似文献   

16.
顾培韵 《化工学报》1995,46(1):123-126
<正>在流动沸腾传热两相流研究中,流型研究一直是众多研究者的兴趣所在。目前有关流型研究的报道均为低粘物系,但高粘流体两相流流型研究,对高聚物生产、食品、轻工等工业有重要应用价值。 浅尾芳久等在透明玻璃管中研究了流动沸腾的流型,表明Mishima等提出的流型划分判据可以较好地区分泡状流、弹状流、环状流。Kamiel等分析比较了大量低粘物系两相流实验数据和几种流型判别式,表明Weisman等提出的判别式可以较好地区分弹状流与环状流。  相似文献   

17.
A quantitative criterion distinguishing stable from unstable transitional packed bed flow in standpipes is presented. This criterion can be used as an working guideline in actual standpipe operation. A fundamental and simple model based on stress free surface (SFS) theory has been developed. This model also provides a quantitative prediction method for the standpipe voidage.  相似文献   

18.
水平管内油水两相流流型转换特性   总被引:5,自引:2,他引:3       下载免费PDF全文
姚海元  宫敬 《化工学报》2005,56(9):1649-1653
以高黏度的油和水为工质,在内径为25.7 mm,长52 m的水平不锈钢油水两相流实验环道内对油水两相流流型及其转换特性进行了实验研究.根据实验结果定义了不同流动条件下出现的流型,绘制了流型图.对影响油水两相管流流型转换的各种因素进行了综合分析,利用量纲分析的方法得出了流型转换的准则关系式,并提出了一个较为准确的有关油水两相管流中反相临界含水率的计算相关式.  相似文献   

19.
刘夷平  王经 《化学工程》2007,35(2):21-25
利用气液二相流一维波模型和段塞稳定性模型,对直径2.54 cm水平管内空气-水二相流出现段塞流时的各相临界表观速度和临界液层高度进行了理论预测。计算中发现,2种模型分别适用于不同的流速区域,在较低的气相流速下,一维波模型的预测结果比较理想,但是在较高的气速条件下不太适合,而利用段塞稳定性模型可以较好地获得高流速下分层流向段塞流的流型转变条件。因此,结合这2种模型对发生流型转变时的临界参数作了分析,并且应用于40 mm和50 mm水平管道的油气二相流实验。将理论计算的结果和实验测得的流型数据进行了对比,并且对影响流型的管径、流速等因素作了分析,结果表明计算得到的特征参数和实验数据比较吻合。  相似文献   

20.
肖荣鸽  王永红  潘杰  魏炳乾  陈刚 《化工学报》2013,64(10):3606-3611
基于文献中提出的针对常规管中气液两相流分层流稳定性的分析,考虑管壁入流对流型的影响,通过公式推导和分析得出了水平管中气液两相变质量流流型从分层流向非分层流转变的准则。通过室内实验研究和预测计算,分析了3种不同的流型转变准则中多个入流流量下管壁入流对流型转变的影响。研究结果表明,实际水平井筒的单位入流流量通常较小,对本地管道单元流型预测的影响可以忽略不计,但是通过不断累积,使得下游管道中流动参数发生变化,从而影响了下游管道单元中气液流动的流型。因此水平孔缝管中气液两相变质量流的流型判别可以采用常规管流型判别准则,但要分段进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号