首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

2.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

5.
In this study, poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends with various compositions were prepared by melt intercalation in a twin‐screw extruder. Modifications of the above blends were performed by using organically modified montmorillonite (OMMT, Cloisite 30B) reinforcement as well as two types of compatibilizers, namely polypropylene grafted with maleic anhydride (PP‐g‐MAH) and ABS grafted with maleic anhydride (ABS‐g‐MAH). Increasing the PP content in ABS matrix seems to increase the melt flow and thermal stability of their blends, whereas a deterioration of the tensile properties was recorded. On the other hand, the addition of ABS to PP promotes the formation of the β‐crystalline phase, which became maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. A tendency for increase of Tc was also recorded by incorporation of the above compatibilizers, whereas the glass transition temperature (Tg) of PP and SAN phase in ABS was reduced. Regarding the Young's modulus, the greatest improvement was observed in pure ABS/PP blends containing organically modified nanoclay. However, in reinforced pure PP, the use of compatibilizers is recommended in order to improve the elastic modulus. The addition of OMMT to noncompatibilized and compatibilized ABS/PP blends significantly improves their storage modulus. POLYM. ENG. SCI., 56:458–468, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
The polypropylene‐graft‐cardanol (PP‐g‐cardanol) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol which could increase the interfacial energy of PP and inhibit the degradation of PP during the process of reactive extrusion and usage. In this article, PP‐g‐cardanol and polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) were used as compatibilizers of the polypropylene (PP)/poly(acrylonitrile‐butadiene‐styrene) (ABS) blends. PP/ABS (70/30, wt %) blends with PP‐g‐cardanol and PP‐g‐MAH were prepared by a corotating twin‐screw extruder. From the results of morphological studies, the droplet size of ABS was minimized to 1.93 and 2.01 μm when the content of PP‐g‐cardanol and PP‐g‐MAH up to 5 and 7 phr, respectively. The results of mechanical testing showed that the tensile strength, impact strength and flexural strength of PP/ABS (70/30) blends increase with the increasing of PP‐g‐cardanol content up to 5 phr. The complex viscosity of PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol showed the highest value. Moreover, the change of impact strength and tensile strength of PP/ABS (70/30) blends were investigated by accelerated degradation testing. After 4 accelerated degradation cycles, the impact strength of the PP/ABS (70/30) blends with 5 phr PP‐g‐cardanol decrease less than 6%, but PP/ABS (70/30) blends with 5 phr PP‐g‐MAH and without compatibilizer decrease as much as 12% and 32%, respectively. The tensile strength of PP/ABS (70/30) blends has a similar tendency to that of impact strength. The above results indicated that PP‐g‐cardanol could be used as an impact modifier and a good compatibilizer, which also exhibited better stability performance during accelerated degradation testing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41315.  相似文献   

7.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
A novel method of enhancing compatibility in PVC/ABS blends is the use of ABS‐grafted‐(maleic anhydride) (ABS‐g‐MAH) as a compatibilizer. In this study, maleic anhydride was grafted onto ABS (initiated by peroxide) in an internal mixer. Grafting degree was determined by a back‐titration method, and certain amounts of the resultant ABS‐g‐MAH were added to PVC/ABS blends during their melt blending in the mixer. The weight ratio of PVC to ABS was kept at 70:30. Evaluation of compatibilization was accomplished via tensile and notched Izod impact tests, scanning electron microscopy (SEM), and rheological studies. According to the SEM micrographs, better dispersion of the rubber phase and its finer size in properly compatibilized blends were indications of better compatibility. Besides, in the presence of a proper amount [5 parts per hundred parts of PVC (php)] of ABS‐g‐MAH, PVC/ABS blends showed significantly higher impact strengths than uncompatibilized blends. This result, in turn, would be an indication of better compatibility. In the presence of 5 php of compatibilizer, the higher complex viscosity and storage modulus, as well as a lower loss modulus and loss factor in the range of frequency studied, indicated stronger interfacial adhesion as a result of interaction between maleic anhydride and the PVC‐SAN matrix. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
To improve the mechanical properties of blends of polypropylene (PP) and terpolymer of ethylene–propylene–diene (EPDM), a triblock copolymer, (PP‐g‐MAH)‐co‐[PA‐6,6]‐co‐(EPDM‐g‐MAH), was synthesized by coupling reaction of maleic anhydride (MAH)‐grafted PP (PP‐g‐MAH), EPDM‐g‐MAH, and PA‐6,6. The newly prepared block copolymer brought about a physical interlocking between the blend components, and imparted a compatibilizing effect to the blends. Introducing the block copolymer to the blends up to 5 wt % lead to formation of a β‐form crystal. The wide‐angle X‐ray diffractograms measured in the region of 2θ between 10° and 50° ascertained that incorporating the block copolymer gave a new peak at 2θ = 15.8°. The new peak was assigned to the (300) plane spacings of the β‐hexagonal crystal structure. In addition, the block copolymer notably improved the low‐temperature impact property of the PP/EPDM blends. The optimum usage level of the compatibilizer proved to be 0.5 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1267–1274, 2000  相似文献   

10.
A new grafting method was developed to incorporate maleic anhydride directly onto solid‐state polypropylene powders. Maleic anhydride grafts altered the nonpolar characteristics of polypropylene so that much better mixing was achieved in blends and composites of polypropylene with many other polymers and fillers. Maleic anhydride was grafted onto polypropylene by the peroxide‐catalyzed swell grafting method, with a maximum extent of grafting of 4.60%. Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, tensile testing, and impact testing were used to characterize the isotactic polypropylene (iPP), maleic anhydride grafted polypropylene (MAH‐giPP), and (isotactic polypropylene)/(calcium carbonate) composites (iPP/CaCO3). The crystallinity and heat of fusion of the MAH‐giPP decreased as the extent of grafting increased. The mechanical properties of the CaCO3 filled polypropylene were improved by adding MAH‐giPP as a compatibilizing agent. The dispersion of the fillers in the polymer matrix and the adhesion between the CaCO3 particles and the polymer matrix were improved by adding the compatibilizer.  相似文献   

11.
High‐density polyethylene grafted isotactic polypropylene (PP‐g‐HDPE) was prepared by the imidization reaction between maleic anhydride grafted polyethylene and amine‐grafted polypropylene in a xylene solution. The branch density was adjusted by changes in the molar ratio between maleic anhydride and primary amine groups. Dynamic rheology tests were conducted to compare the rheological properties of linear polyolefins and long‐chain‐branched polyolefins. The effects of the density of long‐chain branches on the rheological properties were also investigated. It was found that long‐chain‐branched hybrid polyolefins had a higher storage modulus at a low frequency, a higher zero shear viscosity, a reduced phase angle, enhanced shear sensitivities, and a longer relaxation time. As the branch density was increased, the characteristics of the long‐chain‐branched structure became profounder. The flow activation energy of PP‐g‐HDPE was lower than that of neat maleic anhydride grafted polypropylene (PP‐g‐MAH) because of the lower flow activation energy of maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH). However, the flow activation energy of PP‐g‐HDPE was higher than that of PP‐g‐MAH/HDPE‐g‐MAH blends because of the presence of long‐chain branches. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

13.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

15.
In this article, a model study was conducted on the effect of combining cellulose on the properties of virgin and/or recycled commingled plastics with a simulated waste‐plastics fraction composed of high‐density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and poly(vinyl chloride) (PVC) (PE/PP/PS/PVC = 7/1/1/1 by weight ratio). The compatibilizing effect of maleic anhydride‐grafted styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MAH) for the cellulose‐reinforced commingled blends was also investigated. Commingled blends were prepared in a table kneader internal mixer. Mechanical properties were measured by using a universal testing machine. Thermal stability was measured by a thermogravimetric analyzer. It was found that the addition of more than 12.5% cellulose into the commingled blends was effective to enhance the mechanical properties of the virgin and recycled blends. The thermal stability as well as the mechanical properties of the commingled blends were much improved by the reactive blending of cellulose with the commingled blends by peroxide and maleic anhydride. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1531–1538, 1999  相似文献   

16.
In this study, polyamide‐12 (PA12)/brominated isobutylene‐isoprene (BIIR) TPVs with good mechanical properties and low gas permeability were prepared by dynamic vulcanization in a twin‐screw extruder. The effects of three kinds of compatibilizers on the microstructure and properties of BIIR/PA12 TPV were studied. The compatibility between BIIR and PA12 was improved when maleated hydrocarbon polymeric compatibilizer is added. The reaction between maleic anhydride and amine in polyamide leads to the in situ formation of hydrocarbon polymer grafted polyamide which subsequently can be used to lower the interfacial tension between BIIR and polyamide. The compatibilizing effect of maleic anhydride modified polypropylene (PP‐g‐MAH) on BIIR/PA12 blends is the best among these compatibilizers because the surface energy of PP‐g‐MAH is very close to that of BIIR. The dispersed rubber phase of the blend compatibilized by PP‐g‐MAH shows the smallest size and more uniform size distribution, and the resulting TPVs show the best mechanical properties. The effects of fillers on the properties of BIIR/PA12 TPV were also investigated. The size of the BIIR phase increases with the increase in the content of CaCO3. The modulus and tensile strength of TPVs increased with the increase in the content of CaCO3 because of the reinforcing effect of CaCO3 on TPVs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43043.  相似文献   

17.
The phase morphology and surface properties of some maleated ethylene propylene‐diene/organoclay nanocomposites (EPDM‐g‐MA/OC) were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurements. The effect of organoclay and/or compatibilizing agent [maleic anhydride‐grafted polypropylene (PP‐g‐MA)] on the properties of the EPDM‐g‐MA nanocomposites was investigated. The quality and uniformity of nanoclay dispersion were analyzed by SEM and AFM images. The experimental results showed an intercalate structure and biphasic morphology for the binary blends based on EPDM and clay. The surface properties of the studied composites are significantly influenced by the presence of a compatibilizing agent—PP‐g‐MA. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The effects of two compatibilizing agents, polystyrene–poly(ethylene butylene)–polystyrene copolymer (SEBS) and SEBS‐grafted maleic anhydride (SEBS‐g‐MAH), on the morphology of binary and ternary blends of polyethylene, polypropylene, and polyamide 6,6 were investigated with scanning electron microscopy and melt rheology measurements. The addition of the compatibilizers led to finer dispersions of the particles of the minor component and a decrease in their size; this induced a significant change in the blend morphology. The rheological measurements confirmed the increased interaction between the blend components, especially with SEBS‐g‐MAH as the compatibilizer. New covalent bonds could be expected to form through an amine–anhydride reaction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1976–1985, 2004  相似文献   

19.
In the present research, poly(acrylonitrile‐butadiene‐styrene)/polycarbonate (ABS/PC) blends were prepared in a twin screw extruder. An attempt to reinforce and promote compatibility of the above systems was made by the incorporation of organically modified montmorillonite (OMMT, Cloisite 30B), as well as by the addition of compatibilizer (ABS grafted with maleic anhydride, ABS‐g‐MAH), and the effect of those treatments on the morphology, thermal transitions, rheological, and mechanical properties of the above blends was evaluated. The addition of compatibilizer in ABS/PC blends does not significantly affect the glass transition temperature (Tg) of SAN and PC phases, whereas the incorporation of Cloisite 30B decreases slightly the Tg values of SAN and, more significantly, that of PC in compatibilized and uncompatibilized blends. The Tg of PB phase remains almost unaffected in all the examined systems. The obtained results suggest partial dissolution of the polymeric components of the blend and, therefore, a modified Fox equation was used to assess the amount of PC dissolved in the SAN phase of ABS and vice versa.Reinforcing with OMMT enhances the miscibility of ABS and PC phases in ABS/PC blends and gives the best performance in terms of tensile strength, modulus of elasticity, and storage modulus, especially in 50/50 (w/w) ABS/PC blends. The addition of ABS‐g‐MAH compatibilizer, despite the improvement of intercalation process in organoclay/ABS/PC nanocomposites, did not seem to have any substantial effect on the mechanical properties of the examined blends. POLYM. COMPOS., 35:1395–1407, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
Blends of recycled poly(ethylene terephthalate) (R‐PET) and (styrene‐ethylene‐ethylene‐propylene‐styrene) block copolymer (SEEPS) compatibilized with (maleic anhydride)‐grafted‐styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MAH) were prepared by melt blending. The compatibilizing effects of SEBS‐g‐MAH were investigated systematically by study of the morphology, linear viscoelastic behavior, and thermal and mechanical properties of the blends. The results show that there is good agreement between the results obtained by rheological measurement and morphological analysis. The rheological test shows that the melt elasticity and melt strength of the blends increase with the addition of SEBS‐g‐MAH. The Cole‐Cole plots and van Gurp‐Palmen plots confirm the compatibilizing effect of SEBS‐g‐MAH. However, the Palierne model fails to predict the linear viscoelastic properties of the blends. The morphology observation shows that all blends exhibit a droplet‐matrix morphology. In addition, the SEEPS particle size in the (R‐PET)/SEEPS blends is significantly decreased and dispersed uniformly by the addition of SEBS‐g‐MAH. Differential scanning calorimeter analysis shows that the crystallization behavior of R‐PET is restricted by the incorporation of SEEPS, whereas the addition of SEBS‐g‐MAH improves the crystallization behavior of R‐PET compared with that of uncompatibilized (R‐PET)/SEEPS blends. The Charpy impact strength of the blends shows the highest value at SEBS‐g‐MAH content of 10%, which is about 210% higher than that of pure R‐PET. J. VINYL ADDIT. TECHNOL., 22:342–349, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号