首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(butylene adipate‐co‐terephthalate) (PBAT) composites containing silver‐silica (Ag‐SiO2) were prepared using an in‐situ sol–gel process. Maleic anhydride‐grafted PBAT (PBAT‐g‐MA) and multihydroxyl‐functionalized Ag‐SiO2 were used to improve the compatibility and dispersibility of Ag‐SiO2 within the PBAT matrix. The composites were characterized morphologically using transmission electron microscopy and chemically using Fourier transform infrared spectrometry. The existence of Ag‐SiO2 nanoparticles on the substrate was confirmed by the ultraviolet–visible absorption spectra. The antibacterial and antistatic properties of the composites were evaluated whether SiO2 enhanced the electrical conductivity was tested as well as whether Ag enhanced the antibacterial activity of the PBAT‐g‐MA/SiO2 or PBAT/SiO2 composites. The PBAT‐g‐MA/SiO2 or PBAT/SiO2 composite that contained Ag had better antibacterial activity (more than 1.3‐fold). The functionalized PBAT‐g‐MA/Ag‐SiO2 composite can markedly enhanced antibacterial and antistatic properties due to the carboxyl groups of maleic anhydride, which acted as coordination sites for the Ag‐SiO2 phase, allowing the formation of stronger chemical bonds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
To develop high performances of polymer composite laminates, differential scanning calorimetry and dynamic rheological analysis studies were conducted to show curing behaviors of 3‐aminophenoxyphthalonitrile/epoxy resin (3‐APN/EP) matrix and define cure parameters of manufacturing processes. Glass fiber reinforced 3‐APN/EP (GF/3‐APN/EP) composite laminates were successfully prepared through different processing conditions with three parameters such as pressures, temperatures, and time. Based on flexure tests, dynamic mechanical analysis, thermal gravimetric analysis, and scanning electron microscope, the complementary catalytic effect of the three processing parameters is investigated by studying mechanical behavior, thermomechanical behavior, thermal behavior, and fracture morphology of GF/3‐APN/EP laminates. The 50/50 GF/3‐APN/EP laminates showed a significant improvement in flexural strength, glass transition temperature (Tg), and thermal stability with favorable processing parameters. It was also found that the Tg and thermal stability were significantly improved by the postheated treatment method. The effect of manufacturing process provides a new and simple route for the polymer–matrix composites application, which indicates that the composites can be manufactured at low temperatures. But, they can be used in a high temperature environment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39746.  相似文献   

3.
《Polymer Composites》2017,38(10):2261-2271
High‐performance nanosilica composites based on epoxy‐modified polybenzoxazine matrices are developed. Chemorheological study of benzoxazine–epoxy resin mixtures reveals that processing window of the benzoxazine resin (BA‐a) is substantially broadened with an addition of the liquid epoxy. Glass transition temperature (T g) of the BA‐a copolymerized with epoxy resin shows a synergistic behavior with a maximum T g value (174°C) at the benzoxazine–epoxy mass ratio of 80:20. The copolymer at this composition is also used as a matrix for nano‐SiO2 composites. A very low melt viscosity of the benzoxazine–epoxy mixtures promotes good processability with the maximum attainable nano‐SiO2 loading up to 35 wt%. From scanning electron microscopy investigation, fracture surface of the 35 wt% nano‐SiO2‐filled benzoxazine–epoxy composite reveals relatively homogeneous distribution of the nano‐SiO2 in the copolymer with good particle wet‐out. In addition, very high reinforcing effect was also observed in such high content of the nano‐SiO2, i.e., about 2.5 times in modulus improvement. This improvement is attributed to the strong bonding between the copolymer matrix and the nano‐SiO2 through ether linkage as confirmed by Fourier‐transform infrared investigation. POLYM. COMPOS., 38:2261–2271, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
The aim of the present study is to examine and compare the thermal and mechanical properties of epoxy resin/TiO2 particle microcomposites (0.2 μm) and nanocomposites (21 nm). Composite materials consisting of epoxy resin reinforced with different amounts of TiO2 microparticles (1, 5, 10, 15, and 20% wt) and TiO2 nanoparticles (0.5%, 1%, 3%wt) were prepared. The thermal and mechanical properties of the manufactured composites were investigated and compared through differential scanning calorimetry (DSC) and three‐point bending tests (3PB). Lipatov's Theory was then applied on the DSC results, thus leading to the calculation of the particle‐matrix interphase thickness which was correlated to experimental findings. The glass transition temperature (Tg) of the materials was obtained and the effect of the grain size on the measured Tg values was investigated. The data obtained from DSC tests for both micro‐ and nanoinclusions when normalized with respect to the specific surface area of the particles, resulted in a single continuous curve describing the normalized phase transition enthalpy variation with filler weight fraction. POLYM. ENG. SCI., 58:1146–1154, 2018. © 2017 Society of Plastics Engineers  相似文献   

5.
The morphological structure, glass transition, mechanical properties, and dynamic mechanical properties of star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) synthesized by a multifunctional organic lithium initiator and SiO2‐SSBR composite (N‐SSBR) prepared through adding a small amount of nanosilica modified by silane coupling agent to star‐shaped SSBR synthetic solution and co‐coagulating, and their nanocomposites filled with 20 phr nanosilica were investigated, respectively. The results showed that the silica particles were well dispersed with nanosize in N‐SSBR, which glass‐transition temperature (Tg) was 2°C higher than SSBR. N‐SSBR/SiO2 nanocomposite exhibited lower Payne effect and internal friction loss, higher mechanical properties, and its Tg was 2°C higher than SSBR/SiO2 nanocomposite. N‐SSBR might promote the dispersion of nanosilica powder in matrix and could be applied to green tire tread materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
In this study, free‐volume effects on the thermal and mechanical properties of epoxy–SiO2 nanocomposites were investigated. SiO2 particles ranging from 15 nm to 2 µm were used, and the nature of the matrix–filler interphase was modified by surface grafting. Nanoparticles 15 nm in diameter yielded an increase in the glass‐transition temperature (Tg) of the composites up to 5 °C; at the same time, they increased the storage modulus (E′) from 2340 to 2725 MPa. Conversely, large particles markedly decreased both Tg and E′; this suggested the pivotal role of nanoparticle size on the final properties of the nanocomposite. The functionalization of SiO2 nanoparticles markedly improved their dispersion within the epoxy matrix. The positron annihilation lifetime spectroscopy results indicate that the free volume strongly depended on the interphase. These experimental findings obtained here could be extrapolated to industrially relevant nanocomposites and could provide a rationale for the comprehension of free‐volume effects on the thermal and mechanical properties of nanocomposite materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45216.  相似文献   

7.
The hybrid material of EP‐POSS mixture was synthesized by the hydrolysis and condensation of (γ‐glycidoxypropyl) trimethoxysilane. A series of binary systems of EP‐POSS/epoxy blends, epoxy resin modified by silica nanoparticles (SiO2/epoxy), and ternary system of SiO2/EP‐POSS/epoxy nanocomposite were prepared. The dispersion of SiO2 in the matrices was evidenced by transmission electron micrograph, and the mechanical properties, that is, flexural strength, flexural modulus, and impact strength were examined for EP‐POSS/epoxy blends, SiO2/epoxy, and SiO2/EP‐POSS/epoxy, respectively. The fractured surface of the impact samples was observed by scanning electron micrograph. Thermogravimetry analysis were applied to investigate the different thermal stabilities of the binary system and ternary system by introducing EP‐POSS and SiO2 to epoxy resin. The results showed that the impact strength, flexural strength, and modulus of the SiO2/EP‐POSS/epoxy system increased around by 57.9, 14.1, and 44.0% compared with the pure epoxy resin, Ti, Tmax and the residues of the ternary system were 387°C, 426°C, and 25.2%, increased remarkably by 20°C, 11°C and 101.6% in contrast to the pure epoxy resin, which was also higher than the binary systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 810‐819, 2013  相似文献   

8.
Positive temperature coefficient of resistivity (PTCR) behavior of poly(methyl methacrylate) PMMA/silver (Ag)‐coated glass bead composites has been investigated with reference to the conventional PMMA/carbon black (CB) composites. The PMMA/CB composites showed a sudden rise in resistivity (PTC trip) at 115°C, close to the glass transition temperature (T g, 113°C) of the PMMA. However, the PTC trip temperature (92°C) of PMMA/Ag‐coated glass bead composites was appeared well below the T g of PMMA. The room temperature resistivity and PTC trip temperature of the composites were also very much stable upon thermal cycling. Addition of 1 phr of nanoclay increased the PTC trip temperature of PMMA/CB composites to 120°C, close to the T g (118°C) of PMMA/clay nanocomposites, while PMMA/clay/Ag‐coated glass bead nanocomposites showed the PTC trip at 98°C. We proposed that the mismatch in coefficient of thermal expansion (CTE) between PMMA and glass beads played a key role that led to a disruption in continuous network structure of Ag‐coated glass beads even at a temperature well below the T g of PMMA. The decrease in dielectric permittivity of PMMA/Ag‐coated glass bead composites on increasing frequency indicated possible use of the PTC composites as dielectric material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
A series of copolymers and glass fiber composites were successfully prepared from 2,2‐bis [4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh), epoxy resins E‐44 (EP), and polyarylene ether nitriles (PEN) with 4,4′‐diaminodiphenyl sulfone as curing additive. The gelation time was shortened from 25 min to 4 min when PEN content was 0 wt % and 15 wt %, respectively. PEN could accelerate the crosslinking reaction between the phthalonitrile and epoxy. The initial decomposition temperatures (Ti) of BAPh/EP copolymers and glass fiber composites were all more than 350°C in nitrogen. The Tg of 15 wt % PEN glass fiber composites increased by 21.2°C compared with that of in comparison with BAPh/EP glass fiber composite. The flexural strength of the copolymers and glass fiber composites reached 119.8 MPa and 698.5 MPa which increased by 16.6 MPa and 127.3 MPa in comparison with BAPh/EP composite, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Blend systems of polystyrene‐block‐poly(ethylene‐co‐(ethylene‐propylene))‐block‐polystyrene (SEEPS) triblock copolymer with three types of hydrocarbon oil of different molecular weight were prepared. The E″ curves as a function of temperature exhibited two peaks; one peak at low temperature (? ?50°C), arising from the glass transition of the poly[ethylene‐co‐(ethylene‐propylene)] (PEEP) phase and a high temperature peak (? 100°C), arising from the glass transition of the polystyrene (PS) phase. The glass transition temperature (Tg) of the PEEP phase shifted to lower temperature with increasing oil content. The shifted Tg depended on the types of oil and was lower for the low molecular weight oil. The Tg of PS phase of the present blend system, were found to be constant and independent of the oil content, when molecular weight of the oil is high. However, for the lower molecular weight oil, the Tg of the PS phase also shifted to lower temperatures. This fact indicates that the oil of high molecular weight is merely dissolved in the PS phase. The E′ at (75°C, at which temperature both of PEEP and PS phases are in glassy state, was found to be independent of oil content. In contrast, at 25°C, at which temperature the PEEP phase is in rubbery state, the E′ decreased sharply with increasing oil content. This result indicates that the hydrocarbon oil was a selective solvent in the PEEP phase. It mainly dissolved in the PEEP phase, although slightly dissolved into the PS phase as well, when molecular weight of oil is low. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Poly(etherimide)s (PEIs) with different chemical structures were synthesized and characterized, which were employed to toughen epoxy resins (EP/PEI) and carbon fiber‐reinforced epoxy composites (CF/EP/PEI). Experimental results revealed that the introduction of the fluorinated groups and meta linkages could help to improve the melt processability of EP/PEI resins. The EP/PEI resins showed obviously improved mechanical properties including tensile strength of 89.2 MPa, elongation at break of 4.7% and flexural strength of 144.2 MPa, and good thermal properties including glass transition temperature (Tg) of 211°C and initial decomposition temperature (Td) of 366°C. Moreover, CF/EP/PEI‐1 and CF/EP/PEI‐4 composites showed significantly improved toughness with impact toughness of 13.8 and 15.5 J/cm2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A series of monomer casting (MC) nylon‐6/SiO2 composites were prepared via in situ polymerization. It was found that the tensile strength, storage modulus, and notched charpy impact strength of the composites were improved and reached maximum at 3–5 wt% loading of SiO2. The α relaxation peak corresponding to the glass transition temperature (Tg) shifted to high temperature with increasing SiO2 content. Addition of SiO2 led to an increase of the melting and crystallization temperatures, and crystallinity. It also reduced the induction time of crystallization, advance the crystallization process of MC nylon‐6, and improve the crystal growth rate. The self‐nucleation crystallization analysis indicated that SiO2 particles played the role of facilitating the crystallization of the matrix mainly via accelerating the generation of crystal nucleus. By addition of SiO2 particles, the fracture surface of MC nylon‐6 changed to distant striations with many yield folds accompanied by a large number of stress whitening, displaying much obvious character of tough fracture. SiO2 particles can be pulled‐out under stress by being covered with MC nylon‐6 resin due to strong interfacial interaction and presented a skin–core structure. © 2012 Society of Plastics Engineers.  相似文献   

13.
Isocyanate‐functionalized polystyrene (P(St‐co‐TMI)) was successfully synthesized by solution free radical polymerization, which was then used to react with (3‐aminopropyl) triethoxysilane (APTES) to prepare a precursor of polystyrene/inorganic composites (PS/SiO2). To obtain PS/SiO2 composites with chemical bond, the precursor was mixed with triethoxysilane (TEOS) under the sol–gel reaction condition. The chemical bond between the PS and SiO2 particles made the crosslink network more stable and avoided aggregation compared with the physical connection and barely mechanical mixing. The Fourier transform infrared (FT‐IR) results indicate that the isocyanate group ( NCO) was completely reacted with APTES. The field‐emission scanning electron microscopy results show that the morphology of composites and the distribution of the particles, which exhibit good compatibility between organic and inorganic phases, and the inorganic particles show good spatial uniformity. The differential scanning calorimetry shows that the glass transition temperature (Tg) of the PS/SiO2 composites was shifted to high temperature when the amount of APTES increased. The thermal degradation temperature of the PS/SiO2 composites increases with the increasing of APTES content. Master curves at 200°C are constructed for the storage and loss modulus as well as complex viscosity. POLYM. COMPOS. 36:482–488, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
To develop a new class of composites with adequately high thermal conductivity and suitably controlled dielectric constant for electronic packages and printed circuit board applications, polymer composites are prepared with microsized Al2O3 particle as filler having an average particle size of 80–100 μm. Epoxy and polypropylene (PP) are chosen as matrix materials for this study. Fabrication of epoxy‐based composite is done by hand lay‐up technique and its counterpart PP‐based composite are fabricated by compression molding technique with filler content ranging from 2.5–25 vol%. Effects of filler loading on various thermal properties like effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and electrical property like dielectric constant (εc) of composites are investigated experimentally. In addition, physical properties like density and void fraction of the composites along with there morphological features are also studied. The experimental findings obtained under controlled laboratory conditions are interpreted using appropriate theoretical models. Results show that with addition of 25 vol% of Al2O3, keff of epoxy and PP improve by 482% and 498% respectively, Tg of epoxy increases from 98°C to 116°C and that of PP increases from −14.9°C to 3.4°C. For maximum filler loading of 25 vol% the CTE decreases by 14.8% and 26.4% for epoxy and PP respectively whereas the dielectric constants of the composites get suitably controlled simultaneously. POLYM. COMPOS., 36:102–112, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
To protect the carbon/carbon (C/C) composites from oxidation, an outer ultra‐high‐temperature ceramics (UHTCs) HfB2‐SiC coating was prepared on SiC‐coated C/C composites by in situ reaction method. The outer HfB2‐SiC coating consists of HfB2 and SiC, which are synchronously obtained. During the heat treatment process, the formed fluid silicon melt is responsible for the preparation of the outer HfB2‐SiC coating. The HfB2‐SiC/SiC coating could protect the C/C from oxidation for 265 h with only 0.41 × 10?2 g/cm2 weight loss at 1773 K in air. During the oxidation process, SiO2 glass and HfO2 are generated. SiO2 glass has a self‐sealing ability, which can cover the defects in the coating, thus blocking the penetration of oxygen and providing an effective protection for the C/C substrate. In addition, SiO2 glass can react with the formed HfO2, thus forming the HfSiO4 phase. Owing to the “pinning effect” of HfSiO4 phase, crack deflecting and crack termination are occurred, which will prevent the spread of cracks and effectively improve the oxidation resistance of the coating.  相似文献   

16.
We report in this article the results of nanosilica (SiO2)‐filled epoxy composites with different loadings and their electrical, thermal, mechanical, and free‐volume properties characterized with different techniques. The morphological features were studied by transmission electron microscopy, and differential scanning calorimetry was used to investigate the glass‐transition temperature (Tg) of the nanocomposites. The properties of the nanocomposites showed that the electrical resistivity (ρ), ultimate tensile strength, and hardness of the composites increased with SiO2 weight fraction up to 10 wt % and decreased thereafter; this suggested that the beneficial properties occurred up to this weight fraction. The temperature and seawater aging had a negative influence on ρ; that is, ρ decreased with increases in the temperature and aging. The free‐volume changes (microstructural) in the composite systems correlated with seawater aging but did not correlate so well with the mechanical properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Polymer nano‐composites made with a matrix of anhydride‐cured diglycidyl ether of bisphenol A (DGEBA) and reinforced with organo‐montmorillonite clay were investigated. A sonication technique was used to process the epoxy/clay nano‐composites. The thermal properties of the nano‐composites were measured with dynamic mechanical analysis (DMA). The glass transition temperature Tg of the anhydride‐cured epoxy was higher than the room temperature (RT). For samples with 6.25 wt% (4.0 vol%) of clay, the storage modulus at 30°C and at (Tg + 15)°C was observed to increase 43% and 230%, respectively, relative to the value of unfilled epoxy. The clay reinforcing effect was evaluated using the Tandon‐Weng model for randomly oriented particulate filled composites. Transmission electron microscopy (TEM) examination of the nano‐composites prepared by sonication of clays in acetone showed well‐dispersed platelets in the nano‐composites. The clay nano‐platelets were observed to be well‐intercalated/expanded in the anhydride‐cured epoxy resin system. POLYM. COMPOS., 26:42–51, 2005. © 2004 Society of Plastics Engineers.  相似文献   

18.
A novel organic rectorite (OREC) was prepared by treating the natural sodium‐rectorite (Na‐REC) with ionic liquid 1‐hexadecyl‐3‐methylimidazolium bromide ([C16mim]Br). X‐ray diffraction (XRD) analysis showed that the interlayer spacing of the OREC was expanded from 2.23nm to 3.14nm. Furthermore, two types of OREC/epoxy nanocomposites were prepared by using epoxy resin (EP) as matrix, 2‐ethyl‐4‐methylimidazole (2‐E‐4‐MI) and tung oil anhydride (TOA) as curing agents, respectively. XRD and transmission electron microscope (TEM) analysis showed that the intercalated nanocomposite was obtained with addition of the curing agent 2‐E‐4‐MI, and the exfoliated nanocomposite was obtained with addition of the curing agent TOA when the OREC content was less than 2 wt %. For the exfoliated nanocomposite, the mechanical and thermal property tests indicated that it had the highest improvement when OREC content was 2 wt% in EP. Compared to pure EP, 60.3% improvement in tensile strength, 26.7% improvement in bending strength, 34% improvement in bending modulus, 14°C improvement in thermal decomposition temperature (Td) and 5.7°C improvement in glass transition temperature (Tg) were achieved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Crosslinked nitrile‐butadiene rubber (NBR)/hindered phenol composites were successfully prepared by mixing tetrakis [methylene‐3‐(3‐5‐ditert‐butyl‐4‐hydroxy phenyl) propionyloxy] methane (AO‐60) into NBR with 35% acrylonitrile mass fraction. The structural and mechanical properties of the NBR/AO‐60 composites were systematically investigated by using differential scanning calorimeter, XRD, Fourier transform infrared, scanning electronic microscope, dynamic mechanical analyzer, and tensile testing. The results indicated that the AO‐60 changed from crystalline form into amorphous form, and most of the AO‐60 molecules could be uniformly dispersed in the NBR matrix. The glass transition temperature (Tg) of NBR/AO‐60 composites increased gradually with increasing content of AO‐60. The increase in Tg could be attributed to the formation of a strong hydrogen bonding network between the AO‐60 molecules and the NBR matrix. Unlike the pure NBR, the NBR/AO‐60 rubber composites had only one transition with a high loss factor. With increasing content of AO‐60, the loss peak shifted to the high temperature region, the loss factor increased from 1.45 to 1.91, and the area under the tan δ versus temperature curve (TA) also showed a significant increase. All these results were ascribed to the good compatibility and strong intermolecular interactions between NBR and AO‐60. Furthermore, all NBR/AO‐60 composites exhibited higher glass transition temperatures and tensile strength than NBR, and they had other desirable mechanical properties. They have excellent prospects in damping material applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A nanocomposite energetic material was prepared using sol‐gel processing. It was incorporated into the nano or submicrometer‐sized pores of the gel skeleton with a content up to 95 %. AP, RDX, and silica were chosen as the energetic crystal and gel skeleton, respectively. The structure and its properties were characterized by SEM, BET methods, XRD, TG/DSC, and impact sensitivity measurements. The structure of the AP/RDX/SiO2 cryogel is of micrometer scale powder with numerous pores of nanometer scale and the mean crystal size of AP and RDX is approx. 200 nm. The specific surface area of the AP/RDX/SiO2 cryogel is 36.6 m2 g−1. TG/DSC analyses indicate that SiO2 cryogel can boost the decomposition of AP and enhance the interaction between AP and RDX. By comparison of the decomposition heats of AP/RDX/SiO2 at different mass ratios, the optimal mass ratio was estimated to be 6.5/10/1 with a maximum decomposition heat of 2160.8 J g−1. According to impact sensitivity tests, the sensitivity of the AP/RDX/SiO2 cryogel is lower than that of the pure energetic ingredients and their mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号