首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
A method of pulse electrodeposition was proposed to synthesize polyaniline (PANI)/MnO2 composite in aniline, H2SO4, and MnSO4 aqueous solution. The PANI/MnO2 composite has rod‐like structure and MnO2 particles are distributed on PANI uniformly. To evaluate the performance of the as‐prepared materials as supercapacitor electrodes, cyclic voltammetry, galvanostatic charge–discharge measurements, and electrochemical impedance spectroscopy were performed. The PANI/MnO2 composite shows a higher specific capacitance (810 F g−1) than pure PANI (662 F g−1) at a current density of 0.5 A g−1. The cycle life of the composite was also excellent. After 1,000 cycles, it maintained 86.3% of its initial capacitance. POLYM. COMPOS., 36:113–120, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
Polyaniline nanofibers (PANI‐NFs) web are fabricated by electrospinning and used as electrode materials for supercapacitors. Field‐emission scanning electron microscope micrographs reveal nanofibers web were made up of high aspect ratio (>50) nanofibers of length ~30 μm and average diameter ~200 nm. Their electrochemical performance in aqueous (1M H2SO4 and Na2SO4) and organic (1M LiClO4 in propylene carbonate) electrolytes is compared with PANI powder prepared by in situ chemical oxidative polymerization of aniline. The electrochemical properties of PANI‐NFs web and PANI powder are studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. PANI‐NFs web show higher specific capacitance (~267 F g?1) than chemically synthesized PANI powder (~208 F g?1) in 1M H2SO4. Further, PANI‐NFs web demonstrated very stable and superior performance than its counterpart due to interconnected fibrous morphology facilitating the faster Faradic reaction toward electrolyte and delivered specific capacitance ~230 F g?1 at 1000th cycle. Capacitance retention of PANI‐NFs web (86%) is higher than that observed for PANI powder (48%) indicating the feasibility of electro spun PANI‐NFs web as superior electrode materials for supercapacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Manganese oxide was synthesized and dispersed on carbon nanotube (CNT) matrix by thermally decomposing manganese nitrates. CNTs used in this paper were grown directly on graphite disk by chemical vapor deposition technique. The capacitive behavior of manganese oxide/CNT composites was investigated by cyclic voltammetry and galvanostatic charge–discharge method in 1 M Na2SO4 aqueous solutions. When the loading mass of MnO2 is 36.9 μg cm 2, the specific capacitance of manganese oxide/CNT composite (based on MnO2) at the charge–discharge current density of 1 mA cm 2 equals 568 F g 1. Additionally, excellent charge–discharge cycle stability (ca. 88% value of specific capacitance remained after 2500 charge–discharge cycles) and power characteristics of the manganese oxide/CNT composite electrode can be observed. The effect of loading mass of MnO2 on specific capacitance of the electrode has also been investigated.  相似文献   

4.
Storage of energy is considered as the most germane technologies to address the future sustainability. In this study, aniline was chemically oxidized with a controlled concentration of pyrelenediimide tetracarboxylic acid (PDITCA) by ammonium persulfate to polyaniline salt (PANI‐H2SO4‐PDITCA), with nanorods morphologies, having a sensibly decent conductivity of 0.8 S cm?1, wherein H2SO4 was generated from ammonium persulfate during polymerization. PANI‐H2SO4‐PDITCA salt showed bathochromic fluorescence shift (595 nm) compared to PDITCA (546 nm). The Brunauer–Emmett–Teller surface area of the PANI‐H2SO4‐PDITCA‐25 and PANI‐H2SO4‐PDITCA‐50 were 18.3 and 21.4 m2 g?1, respectively. Furthermore, its energy storage efficiency was evaluated by supercapacitor cell configuration. The composite PANI‐H2SO4‐PDITCA‐50 showed capacitance 460 F g?1 at 0.3 A g?1 and large cycle life 85,000 cycles with less retention of 77% to its original capacitance (200 F g?1) even at a better discharge rate of 3.3 A g?1. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45456.  相似文献   

5.
Aniline is oxidized by ammonium persulfate oxidant with a weak organic acid, 1,3‐(6,7)‐napthalene trisulfonic acid (NTSA), via an aqueous polymerization pathway to polyaniline (PANI) salt. The effects of the sodium lauryl sulfate surfactant, mineral acid [sulfuric acid (H2SO4)], and a combination of surfactant with mineral acid in the aniline polymerization reaction are also carried. These salts were designated as PANI–NTSA–dodecyl hydrogen sulfate (DHS), PANI–NTSA–H2SO4, and PANI–NTSA–DHS–H2SO4, respectively. Interestingly, PANI–NTSA–DHS showed a highly ordered crystalline sample with a nanosphere morphology. These PANIs were used as electrode materials in supercapacitor applications. Among the four salts, the PANI–NTSA–DHS–H2SO4 material showed higher values of specific capacitance (520 F/g), energy (26 W h/kg), and power densities (200 W/kg) at 0.3 A/g. Moreover, 77% of the original capacitance was retained after 2000 galvanostatic charge–discharge cycles with a Coulombic efficiency of 98–100%. PANI–NTSA–DHS–H2SO4 was obtained in excellent yield with an excellent conductivity (6.8 S/cm) and a thermal stability up to 235°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42510.  相似文献   

6.
The composite of polyaniline and polypyrrole (PPY‐PANI) was prepared by two‐step electrochemical polymerization method. Techniques of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravity analysis (TG/DTG) measurements were used to characterize the morphology and structure of the composite. The electrochemical properties of the composite were investigated by cyclic voltammetry (CV), galvanostatic charge‐discharge, and electrochemical impedance spectroscopy (EIS). The results indicated that the polyaniline–polypyrrole composite showed better electrochemical capacitive performance than polypyrrole (PPY) and polyaniline (PANI). The specific capacitance of the composite electrode was 523 F/g at a current of 6 mA/cm2 in 0.5 M H2SO4 electrolyte. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
Nanostructured manganese dioxide has been successfully prepared by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Changing the proportions of reagents leads either to γ- or layered structures of MnO2. The capacitive characteristics of the samples were systematically investigated in aqueous electrolytes through means of cyclic voltammetry and chronopotentiometry methods. The electrochemical properties of MnO2 were strongly affected by the pH of electrolyte employed and this material exhibited ideally capacitive behavior in 0.5 M aqueous Na2SO4 solution. A maximum specific capacitance of 344 F g−1 was obtained for the layered structure determined via cyclic voltammetry at a scan rate of 5 mV s−1 in 0.5 M aqueous Na2SO4 solution at pH 3.3. Excellent electrochemical reversibility of the materials was also demonstrated.Layered structure MnO2 showed higher energy density at high power density than the γ-structure material.Impedance spectroscopy studies revealed that charge transfer resistance of the γ-structure oxide has higher value than that of the layered structure.  相似文献   

8.
Polyaniline/MnO2/graphite felt (PMGF) composite, which can be used as a novel free‐standing, flexible electrode for supercapacitors, was fabricated via a facile electrochemical method. Polyaniline/graphite felt (PANI/GF) electrode was prepared by electropolymerization of PANI onto the GF. Subsequently, manganese dioxide (MnO2) was electrodeposited on the surface of the PANI/GF electrode to prepare PMGF electrode. The microstructure and morphology of the as‐prepared samples were characterized by Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specific surface area was examined using N2 adsorption/desorption test. Cyclic voltammogram, chronopotentiometry techniques and electrochemical impedance spectroscopy were introduced to investigate the electrochemical performance of the composites. The PMGF electrode exhibited specific capacitance as high as about 630 F g−1 at the current density of 0.5 A g−1, which is much higher than that of PANI/MnO2 composites reported previously. The high specific capacitance of PMGF may be attributed to the fact that the porous GF is a good conductive matrix for the dispersion of PANI/MnO2 and it can facilitate easy access of electrolytes to the electrode, which results in enhancement of the electrochemical performance of the composite. Moreover, the specific capacitance of PMGF is much larger than that of MnO2/GF (MGF), which may be ascribed to the participant of PANI, which contributes additional pseudocapacitance and electron transport path. POLYM. COMPOS., 34:819–824, 2013. © 2013 Society of Plastics Engineers  相似文献   

9.
Carbon nanofibers (CNFs)/MnO2 nanocomposites were prepared as freestanding electrodes using in situ redox deposition and electrospinning. The electrospun CNFs substrates with porosity and interconnectivity enabled the uniform incorporation of birnessite-type MnO2 deposits on each fiber, thus showing unique and conformal coaxial nanostructure. CNFs not only provided considerable specific surface area for high mass loading of MnO2 but also offered reliable electrical conductivity to ensure the full utilization of MnO2 coatings. The effect of MnO2 loading on the electrochemical performances was investigated by cyclic voltammetry (CV), impedance measurements and Galvonostatic charging/discharging technique. The results showed that an ultrathin MnO2 deposits were indispensable to achieve better electrochemical performance. The maximum specific capacitance (based on pristine MnO2) attained to 557 F/g at a current density of 1 A/g in 0.1 M Na2SO4 electrolyte when the mass loading reached 0.33 mg/cm2. This freestanding electrode also exhibited good rate capability (power density of 13.5 kW/kg and energy density of 20.9 Wh/kg at 30 A/g) and long-term cycling stability (retaining 94% of its initial capacitance after 1500 cycles). These characteristics suggested that such freestanding CNFs/MnO2 nanocomposites are promising for high-performance supercapacitors.  相似文献   

10.
Manganese dioxide/multiwalled carbon nanotubes (MnO2/MWCNTs) were synthesized by chemically depositing MnO2 onto the surface of MWCNTs wrapped with poly(sodium-p-styrenesulfonate). Then, polyaniline (PANI) with good supercapacitive performance was further coated onto the MnO2/MWCNTs composite to form PANI/MnO2/MWCNTs organic-inorganic hybrid nanoarchitecture. Electrochemical performance of the hybrid in Na2SO4-H2SO4 mixed acidic electrolytes was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CP) in detail. Comparative electrochemical tests revealed that the hybrid nanoarchitecture could operate in the acidic medium due to the protective modification of PANI coating layer onto the MnO2/MWCNTs composite, and that its electrochemical behavior was greatly dependent upon the concentration of protons in the acidic electrolytes. Here, PANI not only served as a physical barrier to restrain the underlying MnO2/MWCNTs composite from reductive-dissolution process so as to make the novel ternary hybrid material work in acidic medium to enhance the utilization of manganese oxide as much as possible, but also was another electroactive material for energy storage in the acidic mixed electrolytes. It was due to the existence of PNAI layer that an even larger specific capacitance (SC) of 384 F g−1 and a much better SC retention of 79.9% over 1000 continuous charge/discharge cycles than those for the MnO2/MWCNTs nanocomposite were delivered for the hybrid in the optimum 0.5 M Na2SO4-0.5 M H2SO4 mixed acidic electrolyte.  相似文献   

11.
The copolymer of pyrrole and aniline, poly(pyrrole‐co‐aniline), has been prepared by chemical oxidation of corresponding monomer mixtures with ammonium peroxysulfate. Techniques of FTIR, SEM‐EDS, and BET surface area measurement were used to characterize the structure and morphology of the copolymer. The electrochemical properties of the copolymer were investigated by cyclic voltammetry, galvanostatic charge‐discharge, and electrochemical impedance spectroscopy. The results indicated that poly(pyrrole‐co‐aniline) was about 100–300 nm in diameter and showed better electrochemical capacitive performance than polypyrrole and polyaniline. The specific capacitance of the copolymer electrode was 827 F/g at a current of 8 mA/cm2 in 1 mol/L Na2SO4 electrolyte. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g−1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor.  相似文献   

13.
Hybrid films of polyaniline (PANI) and manganese oxide (MnOx) were obtained through potentiodynamic deposition from solutions of aniline and MnSO4 at pH 5.6. The hybrid films demonstrated characteristic redox behaviors of PANI in acidic aqueous solution. Characterization of the hybrid films by XRD indicated the amorphous nature of MnOx in the films in which manganese existed in oxidation states of +2, +3 and +4, based on XPS measurement. Hybrid film of PANI and MnOx, PM120 obtained from the solution of 0.1 M aniline and 120 mM Mn2+ displayed a well opened nanofibrous structure which showed an 44% increase in specific capacitance from that of PANI (408 F g?1) to 588 F g?1, measured at 1.0 mA cm?2 in 1 M NaNO3 (pH 1). The hybrid film kept more than 90% of its capacitance after 1000 charging-discharging cycles, with a coulombic efficiency of 98%. The specific capacitance of a symmetric capacitor using PM120 as the electrodes is 112 F g?1.  相似文献   

14.
One‐dimensional nanostructures of polyaniline (PANI) doped with (1S)‐(+)‐10‐camphorsulfonic acid (D‐CSA) alone and with NiCl2 as a codopant were synthesized via in situ polymerization. PANI nanofibers with diameters of about 200 nm were formed when PANI was doped with D‐CSA only. When NiCl2 was added as a codopant, the morphology of PANI obviously changed. The effects and related mechanisms were investigated by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, inductively coupled plasma–atomic emission spectroscopy, and X‐ray diffraction, and the results indicated that Ni2+ destroyed the micelles' structure by chemical conjunction with ? SO3H groups in camphorsulfonic acid (CSA) molecules, which were the key component in forming the CSA–aniline micelles. The combination between Ni2+ and SO in CSA with a lower addition of Ni2+ led to a reduction of CSA doping to PANI, but a higher loading of Ni2+ brought about the direct doping of Ni2+ to PANI, which caused a higher degree of doping and oxidation. The conductivity of PANI increased almost linearly with increasing Ni2+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A flexible electrode was prepared by microwave heating deposition of manganese oxide (MnO2) on carbon nanotubes (CNTs) followed by electrophoretic deposition of the MnO2-coated CNTs on a flexible graphite sheet (FGS). The prepared MnO2-coated CNTs were characterized by scanning and transmission electron microscopy, and X-ray diffraction. A uniformly thin nano-scale MnO2 coating was formed on the surface of the CNTs. The MnO2-coated CNTs–FGS electrode showed highly capacitive behaviour in the 0.5 M Na2SO4 aqueous solution, with a specific capacitance of 442.9 F/g based on MnO2 at 2 mV/s. It exhibited an excellent cycling stability with no more than 1.1% capacitance loss after 1000 cycles at 50 mV/s.  相似文献   

16.
《Ceramics International》2015,41(6):7402-7410
Flexible composites with manganese oxides (MnOx) nanocrystals encapsulated in electropun carbon nanofibers were successfully fabricated via a simple and practical combination of electrospinning and carbonization process. The as-formed MnOx/carbon nanofibers composites have a rough surface with MnOx nanoparticles well embedded in the carbon nanofibers backbones. When used as electrodes for supercapacitor, the resulting MnOx/carbon nanofiber composites exhibit good electrochemical performance with a specific capacitance of 174.8 F g−1 at 2 mV s−1 in 0.5 M Na2SO4 electrolyte, a good rate capability at high current density and long-term cycling stability. It is expected that such freestanding composites could be promising electrodes for high-performance supercapacitors.  相似文献   

17.
One‐step and template‐free synthesis of polyaniline nanobuds (PANI NBs), synthesized using anodic electrochemical polymerization method, is reported at room temperature onto a conducting indium‐tin‐oxide glass substrate. The PANI NBs are characterized for their structural, morphological, and electrochromic properties. Scanning electron microscopy image reveals NBs type architecture, perpendicular to the substrate surface. These NBs are broader at their bottoms and narrower at the tops. Individual NB has confirmed 30 nm top diameter and 100–200 nm length. Electrochemical supercapacitive behavior of the PANI NBs electrode is investigated by measuring cyclic voltammetry curves. Moderate specific capacitance of 128 F/g is achieved in the potential range of ?0.2 to 1.0 V at 10 mV/s sweep rate in 0.5 M H2SO4 electrolyte. Influence of inner and outer charges on a resultant specific capacitance is also investigated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The composites of polypyrrole (PPY) and MnO2 have been prepared through chemical oxidation of pyrrole monomer and MnO2 suspension with ammonium peroxysulfate at low temperature. The morphology and structure of materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Transmission electron microscopy (TEM), thermal gravity analysis ‐ differential thermal gravity (TG‐DTG), and X‐ray diffraction (XRD) measurements. The electrochemical properties of the composite were investigated by galvanostatic charge–discharge and electrochemical impedance spectroscopy. The specific capacitance of the composite electrode is 352.8 F/g at a current of 8 mA/cm2 in Na2SO4 electrolyte of 0.5 mol/L, which is much higher than that of 246.2 F/g and 103.5 F/g of PPY and MnO2, respectively. A convenient and effective technique has been developed to fabricate composite materials of PPY and MnO2 promising for designing new capacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Developing appropriate stable electroactive electrode materials for supercapacitor application is the challenging issue, which attracts enormous attention in recent decades. In this regard, Fe3O4 nanoparticles are firstly synthesized on chitosan/graphene oxide-multiwall carbon nanotubes (CS/GM/Fe3O4). Then, polyaniline (PANI) is grafted on it via in situ chemical polymerization and named as CS/GM/Fe3O4/PANI. The as-prepared nanocomposites are characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The capacitive properties of the electrodes are investigated in a three electrode configuration in 0.5 M Na2SO4 electrolyte by various electrochemical techniques. The specific capacitance of CS/GM/Fe3O4/PANI electrode is 1513.4 Fg−1 at 4 Ag−1 which is 1.9 times higher than that of CS/GM/Fe3O4 (800 Fg−1). Meanwhile, the electrodes exhibit appropriate cycle life along with 99.8% and 93.95% specific capacitance at 100 Ag−1 for chitosan/GO-CNT/Fe3O4 and polyaniline grafted chitosan/GO-CNT/Fe3O4, respectively.  相似文献   

20.
PANI/SWCNT composites were prepared by electrochemical polymerisation of polyaniline onto SWCNTs and their capacitive performance was evaluated by means of cyclic voltammetry and charge-discharge cycling in 1 M H2SO4 electrolyte. The PANI/SWCNT composites single electrode showed much higher specific capacitance, specific energy and specific power than pure PANI and SWCNTs. The highest specific capacitance, specific power and specific energy values of 485 F/g, 228 W h/kg and 2250 W/kg were observed for 73 wt.% PANI deposited onto SWCNTs. PANI/SWCNT composites also showed long cyclic stability. Based upon the variations in the surface morphologies and specific capacitance of the composite, a mechanism is proposed to explain enhancement in the capacitive characteristics. The PANI/SWCNT composites have demonstrated the potential as excellent electrode materials for application in high performance supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号