首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(5):6453-6460
In the present work, the influence of sintering temperature and particle size of pristine ZrC particles on the microstructure, mechanical properties, and thermal properties of ZrC/ZTA ceramic composites are investigated. Specimens consolidated by spark plasma sintering at different sintering temperatures from 1500 °C to 1800 °C. XRD results revealed that α-Al2O3, t-ZrO2, ZrC, and a small quantity of m-ZrO2 phases are present in the composites. The microstructure of μm-ZrC/ZTA is found to be more compact than nm-ZrC/ZTA composites. There is an apparent increase in the average grain size with the increase in temperature. From the micrographs of fracture surfaces, step-wise transgranular fracture structures are observed. Relative densities and Vickers hardness are in proportion to sintering temperature from 1500 °C to 1700 °C. The maximum Vickers hardness of 1919 HV1 is obtained for μm-ZrC/ZTA composites. Indentation fracture toughness displays a gradual rise when the temperature rises from 1500 °C to 1700 °C, then deteriorates at 1800 °C for both nm-ZrC/ZTA and μm-ZrC/ZTA ceramic composites. The maximum fracture toughness values for nm-ZrC/ZTA and μm-ZrC/ZTA are 6.75 MPa m1/2 and 6.83 MPa m1/2, respectively. The thermal conductivity of the specimens decreased gradually as the temperature increases from 100 °C to 1000 °C. The obtained results indicated that the 1700 °C is the optimized sintering temperature where μm-ZrC/ZTA composites have excellent performance on microstructure, mechanical properties, and thermal properties than nm-ZrC/ZTA composites.  相似文献   

2.
《Ceramics International》2016,42(3):4099-4106
One kind of Al2O3/Ti(C,N) micro-nano-composite ceramic tool material with acceptable properties was prepared by microwave sintering. Effects of sintering temperature and holding time on densification, mechanical properties and microstructure were studied. The optimal relative density, fracture toughness and Vickers hardness were 98.4±0.30, 6.72±0.28 MPa m1/2 and 18.42±0.59 GPa, respectively, which were obtained at 1550 °C for 10 min. Compared to the conventional sintering, the sintering temperature and holding time of microwave sintering were reduced by 14% and 89%, respectively. The microwave sintering made the sizes of some particles keep in nano-scale, which leaded to the formation of intragranular structures. The residual stress in the intragranular structures increased the ratio of grain boundary toughness to grain toughness of matrix (Kcb/Kcg), and thus the micro-Al2O3 grains were more inclined to transgranular fracture.  相似文献   

3.
《Ceramics International》2023,49(16):26719-26725
The effect of MnO2 additives on the sintering behavior and mechanical properties of alumina-toughened zirconia (ATZ, with 10 vol% alumina) composites was investigated by incorporating different amounts of MnO2 (0, 0.5, 1.0, and 1.5 wt%) and sintering at various temperatures ranging from 1300 to 1450 °C. The addition of MnO2 up to 1.0 wt% improved the sintered density, hardness, flexural strength, and fracture toughness of the composite. However, the addition of 1.5 wt% MnO2 degraded the relative density, hardness, and flexural strength of the composite due to the transformation of the ZrO2 phase from tetragonal to monoclinic and grain coarsening. Optimal results were obtained with 1.0 wt% MnO2 and sintering at 1450 °C, which improved the mechanical properties (hardness: 13.5 GPa, flexural strength: 1.2 GPa, fracture toughness: 8.5 MPa m1/2) and lowered the sintering temperature compared to the conventional sintering temperature of ATZ composites (1550 °C). Thus, the ATZ composite doped with MnO2 is a promising material for structural engineering ceramics owing to its improved mechanical properties and lower sintering temperature.  相似文献   

4.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

5.
Alumina is an engineering ceramic material with excellent comprehensive properties as well as the inherent shortcoming of the low fracture toughness. Y2O3-stabilized t-ZrO2 (TZP) is an effective additive to improve its fracture toughness. In this work, rotary chemical vapor deposition (RCVD) was applied to uniformly coat TZP nanoparticles on α-Al2O3 powder, and then the powder was compacted via spark plasma sintering. The content of TZP increased from 0.56 to 4.7 wt% with increasing the deposition temperature from 500 to 800 °C but decreased at 900 °C. The RCVD-TZP nanoparticles homogeneously surrounded the α-Al2O3 grains and inhibited its growth after sintering. The relative density, fracture toughness and hardness of the ZTA composites had the maximum values of 99.2%, 7.28 ± 0.33 MPa m1/2, and 19.5 ± 0.5 GPa at 1500 °C and 4.7 wt% RCVD-TZP, respectively, much higher than the ZTA composites directly mixed with TZP commercial powder.  相似文献   

6.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process.  相似文献   

7.
《Ceramics International》2023,49(20):32388-32398
WC-CoCrFeNiAl composites were fabricated via SPS using commercial CoCrFeNiAl and WC powders, with the optimal addition content of CoCrFeNiAl determined. Furthermore, the influence of phase transformation in CoCrFeNiAl high-entropy alloy on the mechanical properties of WC-CoCrFeNiAl composites was investigated. The results indicate that the hysteresis diffusion effect of CoCrFeNiAl HEA can significantly impede the growth of WC grains. Moreover, during the sintering process, a BCC-to-FCC phase transformation occurs in CoCrFeNiAl HEA. The phase transition of HEA can be regulated by adjusting the sintering temperature, resulting in a decrease in hardness and an increase in fracture toughness of WC-CoCrFeNiAl composites as HEAs undergo phase transformation. The Vickers hardness and fracture toughness values of WC-10CoCrFeNiAl composites sintered at 1250 °C are comparable to those of WC-10Co hard alloy, with respective values of 17.64 GPa and 12.3 MPa m1/2.  相似文献   

8.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

9.
Fine-grained Al2O3/SiC composite ceramic tool materials were synthesized by two-step microwave sintering. The effects of first-step sintering temperature (T1), content and particle size of SiC on the microstructure and mechanical properties were studied. It was found that the sample with higher content of SiC was achieved with finer grains, and the incorporation of SiC particles could bridge, branch and deflect the cracks, thus improving the fracture toughness. Higher T1 was required for the densification of the samples with higher content of SiC (>5?wt%). The sample containing 3?wt% SiC particles with the mean particle size of 100?nm, which was sintered at 1600?°C (T1) and 1100?°C (T2) for 5?min had the fine microstructure and optimal properties. Its relative density, grain size, Vickers hardness and fracture toughness obtained were 98.37%, 0.78?±?0.31?μm, 18.40?±?0.24?GPa and 4.97?±?0.30?MPa?m1/2, respectively. Compared to the sample prepared by single-step microwave sintering, although near full densification can be achieved in both two methods, the grain size was reduced by 36% and the fracture toughness was improved by 28% in two-step microwave sintering.  相似文献   

10.
The boron nitride nanosheets (BNNSs)/aluminum nitride (AlN) composites were prepared by hot press sintering at 1600°C. The microstructure, mechanical properties, and thermal conductivity of the samples were measured, and the effect of adding BNNSs to AlN ceramics on the properties was studied. It is found that the addition of BNNSs can effectively improve the mechanical properties of AlN. When the additional amount is 1 wt%, the bending strength of the sample reaches the maximum value of 456.6 MPa, which is 23.1% higher than that of the AlN sample without BNNSs. The fracture toughness of the sample is 4.47 MPa m1/2, a 68.7% improvement over the sample without BNNSs. The composites obtained in the experiment have brilliant mechanical properties.  相似文献   

11.
A kind of Ti(C, N)-based cermet tool material was prepared by microwave sintering. The influence of metal phases (Ni, Co, and Mo) on densification and mechanical properties was studied by orthogonal test. The results indicated that Co was more significant in improving relative density and fracture toughness than Ni, while Ni and Co had the similar effects on increasing the hardness of Ti(C, N)-based cermet. Mo can improve fracture toughness but decrease hardness. Ti(C, N)-based cermet with 6 wt% Ni, 6 wt% Co and 6 wt% Mo (TN6C6M6) had the optimal comprehensive mechanical performances, and its fracture toughness and hardness were better than that of Ti(C, N)-based cermet prepared by conventional sintering. The increasing of sintering temperature promoted the uniformity of microstructure and significantly improved densification and hardness of the Ti(C, N)-based cermet. The highest fracture toughness of TN6C6M6 (12.41 ± 0.33 MPa·m1/2) was achieved when sintered at 1600°C. For the microwave-sintered Ti(C, N)-based cermet, heat preservation period had little effect on densification. The relative density can reach up to 98.6% even though the heat preservation period was 0 minute.  相似文献   

12.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

13.
This paper presents a study on graphene-reinforced Al2O3-SiCw ceramic composites and the relationship between graphene oxide (GO) loading and the resulting mechanical and electrical properties. Well-dispersed ceramic-GO powders were fabricated using a colloidal processing route. Dense composites were obtained via spark plasma sintering, a technique that has the ability to reduce GO to graphene in situ during the sintering process. The mechanical properties of the sintered composites were investigated. The composite with only a small amount of graphene (0.5 vol.%) showed the highest flexural strength (904 ± 56 MPa), fracture toughness (10.6 ± 0.3 MPa·m1/2) and hardness (22 ± 0.8 GPa) with an extremely good dispersion of graphene within the ceramic matrix. In addition to these exceptional mechanical properties, the sintered composites also showed high electrical conductivity, which allows the compacts to be machined using electrical discharge machining and thus facilitates the fabrication of ceramic components with sophisticated shapes while reducing machining costs.  相似文献   

14.
《Ceramics International》2023,49(7):10748-10755
Ultra-high temperature HfB2 ceramic with nearly full densification is achieved by using gradient sintering process of SPS without any additives. The effect of the sintering temperature on the densification behavior, relative density, microstructure, mechanical and thermionic properties is systematically investigated. The results show that the fast densification of HfB2 ceramic occurs at the heating stage, and the highest relative density of 96.75% is obtained at T =1950 °C, P = 60 MPa and t =10min. As the temperature is increased from 1800 to 1950 °C, the grain size of HfB2 increases from 6.12 ±1.33 to 10.99 ± 2.25 μm, and refined microstructure gives the excellently mechanical properties. The highest hardness of 26.34 ±2.1GPa, fracture toughness of 7.12 ± 1.33 MPa m1/2 and bending strength of 501 ±10MPa belong to the HfB2 ceramic obtained at T =1950°C. Moreover, both the Vickers hardness and fracture toughness obey the normal indentation size effect. HfB2 ceramic also exhibits the thermionic emission characterization with the highest current density of 6.12 A/cm2 and the lowest work function of 2.92 eV.  相似文献   

15.
《Ceramics International》2021,47(18):25645-25654
Homogeneous and functional gradient nanocomposites were prepared using a two-step sintering process at a pressure of 30 MPa. The effects of macro –micro fracture morphologies and element distributions on the mechanical properties of the composites were studied. The results showed that the fracture toughness of the inner layers of the gradient material was almost the same as that of the corresponding homogeneous material. The composition content difference between the gradient layers had a significant influence on the bending strength and hardness. There was little Ni and Mo diffusion in the gradient nanocomposites because of the relatively low contents and suitable processing parameters. A gradient distribution of the metals was ensured. The surface layer thickness had little influence on the flexural strength of the gradient nanocomposite, but it had an obvious influence on the hardness and fracture toughness of the surface. The five-layered gradient composite with a surface layer thickness of 85 μm exhibited the best mechanical properties, including a flexural strength of 1021 ± 35 MPa, fracture toughness of 7.60 ± 0.21 MPa m1/2 and surface hardness of 19.26 ± 0.62 GPa.  相似文献   

16.
To solve the poor sinterability and wettability between TiN ceramic and pure metal via using coated composite powders, dense TiN-Ni cermets with uniform microstructure and fine grains were developed at a low sintering temperature of 1300℃ in this work. TiN powders were firstly activated in a strong acid solution, in order to achieve a step-like surface; Ni-coated TiN powders showed an uniform and controllable morphology. Two types of TiN-Ni cermets based on conventional milled powders and Ni-coated TiN composite powders were fabricated by spark plasma sintering (SPS), and used for the comparison concerning the sintering behavior, microstructure and related mechanical properties. Results showed that Ni-coated TiN composite powders helped to improve the sinterability between ceramic and metal, which is rather beneficial to obtain dense TiN-Ni cermets with homogeneous microstructure and high mechanical properties. Compared to those of conventional TiN-Ni, the relative density, Rockwell hardness and fracture toughness increased from 84.9% to 96.6%, 80.2 to 84.3, and 10.2 MPa·m1/2 to 14.7 MPa·m1/2, with a rather low sintering temperature of 1300 ℃, respectively.  相似文献   

17.
α/β-SiAlON/SiC composite ceramic tool materials were prepared via spark plasma sintering. The effects of content and size of SiC particles and sintering temperature on phase composition, mechanical properties, and microstructure were investigated. The results indicated that SiC restrained the transformation of β-SiAlON to α-SiAlON, but higher SiC content (≥10 wt.%) resulted in a higher Vickers hardness of the composite. The large size of SiC particles raised the densification temperature of α/β-SiAlON composites, and small SiC particles benefited to improve microstructure. There were more equiaxed α-SiAlON grains and β-SiAlON with a larger aspect ratio ( α ¯ 95 $\bar{\alpha}_{95}$  = 5.1) in the α/β-SiAlON composite containing 100 nm SiC. The sample containing 10 wt.% 100 nm SiC particles sintered at 1700°C had the optimal properties with a Vickers hardness and fracture toughness of 18.5 ± .2 GPa, 6.4 ± .2 MPa m1/2, respectively.  相似文献   

18.
A new approach to improve the interfacial matching of carbon fiber-reinforced lithium-aluminum-silicon(Cf/LAS) composites is proposed, which is achieved by Ni nanoparticles catalyzing the formation of a tunable graphite layer on the surface of Cf. The interfacial structure between the composites can be effectively improved by tuning parameters such as Ni2+ content and sintering holding time, and ultimately, the mechanical properties of the composites can be improved. Interestingly, due to the introduction of Ni2+, a yolk-shell type graphite layer is formed between the Cf and LAS, and the bridging effect of the graphite layer improves interfacial bonding. The highest flexural strength (515 ± 30 MPa) and fracture toughness (14.7 ± 1.6 MPa·m1/2) were obtained. Taking Cf/LAS as an example, the relationship between interfacial matching and mechanical properties of composites is systematically investigated and may provide a new idea for the improvement of mechanical properties of fiber-reinforced composites.  相似文献   

19.
《Ceramics International》2020,46(12):20068-20080
In this study, Al2O3–TiC composites synergistically reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were prepared via spark plasma sintering (SPS). The effects of the MWCNT and GNP contents on the phase composition, mechanical properties, fracture mode, and toughening mechanism of the composites were systematically investigated. The experimental results indicated that the composite grains became more refined with the addition of MWCNTs and GNPs. The nanocomposites presented high compactness and excellent mechanical properties. The composite with 0.8 wt% MWCNTs and 0.2 wt% GNPs presented the best properties of all analysed specimens, and its relative density, hardness, and fracture toughness were 97.3%, 18.38 ± 0.6 GPa, and 9.40 ± 1.6 MPa m1/2, respectively. The crack deflection, bridging, branching, and drawing effects of MWCNTs and GNPs were the main toughening mechanisms of Al2O3–TiC composites synergistically reinforced with MWCNTs and GNPs.  相似文献   

20.
High-toughness mullite ceramics were fabricated through hot-press sintering (HPS) of pyrophyllite and AlOOH, which were wet-milled and well mixed using a planetary ball mill. The impacts of sintering temperatures and contents of AlOOH on mullite phase formation, densification, microstructure and mechanical properties in ceramic materials were investigated through XRD, SEM and mechanical properties determination. The results indicated that high-toughness mullite ceramics could be successfully prepared by HPS at temperatures higher than 1200°C for 120 min. Increasing the sintering temperature from 1000 to 1300°C significantly enhanced the flexural strength and fracture toughness of samples. The highest flexural strength of 297.97±25.32 MPa and fracture toughness of 4.64±0.11 MPa⋅m1/2 were obtained for samples sintered at 1300°C. Further increase of temperature to 1400°C resulted in slight decrease of flexural strength and fracture toughness. Compared with the mullite ceramics prepared only using pyrophyllite as raw material, incorporation of AlOOH into raw material significantly increased the mechanical properties of final mullite ceramics. And stoichiometric AlOOH and pyrophyllite as starting material gave the best performance in fracture toughness. The high-toughness of mullite ceramics were ascribed to the high mullite phase content, fine mullite whiskers and in situ formed, intertwined three-dimensional network structure obtained through HPS at a low temperature of 1300°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号