首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
《Ceramics International》2016,42(8):9972-9980
Ti3SiC2/Cu composites with different contents of Cu were fabricated by mechanical alloying and spark plasma sintering method. The phase composition and structure of the composites were analyzed by X-ray diffractometry and scanning electron microscopy equipped with energy dispersive spectroscopy. The mechanical and tribological properties of Ti3SiC2/Cu composites were tested and analyzed compared with monolithic Ti3SiC2 in details. The results show that the Cu leads to the decomposition of Ti3SiC2 to produce TiCx, Ti5Si3Cy, Cu3Si, and TiSi2Cz. The friction coefficient and wear rate of the composites are lower than that of monolithic Ti3SiC2, which is ascribed to the fixing effect of hard TiCx, Ti5Si3Cy, and Cu3Si to inhibit the abrasive friction and wear. However, at elevated temperatures (ranging from room temperature to 600 °C) the friction and wear of the composites are higher than those at room temperature. Plastic flowing and tribo-oxidation wear accompanied by material transference contribute to the increased friction and wear at elevated temperatures.  相似文献   

2.
Synthesis, characterization and density functional theory calculations have been combined to examine the formation of the Zr3(Al1–xSix)C2 quaternary MAX phases and the intrinsic defect processes in Zr3AlC2 and Zr3SiC2. The MAX phase family is extended by demonstrating that Zr3(Al1–xSix)C2, and particularly compositions with x≈0.1, can be formed leading here to a yield of 59 wt%. It has been found that Zr3AlC2 ‐ and by extension Zr3(Al1–xSix)C2 ‐ formation rates benefit from the presence of traces of Si in the reactant mix, presumably through the in situ formation of ZrySiz phase(s) acting as a nucleation substrate for the MAX phase. To investigate the radiation tolerance of Zr3(Al1–xSix)C2, we have also considered the intrinsic defect properties of the end‐members. A‐element Frenkel reaction for both Zr3AlC2 (1.71 eV) and Zr3SiC2 (1.41 eV) phases are the lowest energy defect reactions. For comparison we consider the defect processes in Ti3AlC2 and Ti3SiC2 phases. It is concluded that Zr3AlC2 and Ti3AlC2 MAX phases are more radiation tolerant than Zr3SiC2 and Ti3SiC2, respectively. Their applicability as cladding materials for nuclear fuel is discussed.  相似文献   

3.
In the diffusion couple of Ti3SiC2 and Ti3AlC2, only interdiffusion of Si and Al occurred during diffusion treatment process. Based on the concentration profiles of Si and Al measured by electron probe microanalysis (EPMA), the interdiffusion coefficients of Si and Al at 1373-1673 K in Ti3SiC2–Ti3AlC2 diffusion couple were determined by both the Boltzmann-Matano (B-M) method and the Saucer-Freise (S-F) method. At the position of Matano plane with the composition of Ti3Al0.5Si0.5C2, the interdiffusion coefficient could be expressed as Dint (m2/s) = 5.6 × 10−4⋅exp [−246 ± 14 (kJ/mol)/RT]. Based on the two methods, the calculated interdiffusion coefficients increased with increasing temperature, and the magnitudes of their absolute values were on the order of 10–13-10–11 m2/s at 1373-1673 K. At 1373-1573 K, the calculated interdiffusion coefficients decreased monotonously with the increase of Si concentration, that is, xSi/(xAl + xSi). But at 1673 K, the variation trend of interdiffusion coefficients with xSi/(xAl + xSi) was no longer monotonous, probably due to the presence of Ti5Si3 phase and voids on Ti3AlC2 side.  相似文献   

4.
Ti3SiC2/Al2O3 multilayered composites were prepared by the combination of tape casting and hot pressing sintering. The slurry was produced by adjusting the amounts of each organic material, including triethyl phosphate (TEP) as a dispersion, polyvinyl butyrate (PVB) as a binder, dioctyl phthalate (DOP) as a plasticizer, and anhydrous ethanol as an organic solvent. When TEP content was 3 wt.%, PVB content was 4.5 wt.%, R-value (DOP/PVB) was 1.4, and solid content was 38 wt.%; the cast film with a smooth surface, good flexibility, and uniform thickness was obtained after defoaming, tape casting, and drying. Three samples were prepared, namely, S1–S3. The S1 was monolithic Ti3SiC2/Al2O3 (mass ratio is 1:1) composites. S2 and S3 were Ti3SiC2/Al2O3 multilayered composites, which matrix layers were Ti3SiC2/Al2O3 composites (mass ratio is 1:1) and Al2O3, respectively, and their interface layer was Ti3SiC2. S1–S3 were also sintered at 1550°C. The bending strength of multilayered materials were lower than that of monolithic material, but the fracture toughness of multilayered materials significantly increased. Due to the introduction of Ti3SiC2 interface layer, the friction coefficient and wear rate of Ti3SiC2/Al2O3 multilayered composites were reduced by 30.7% and 33.8%, respectively, compared with monolithic material.  相似文献   

5.
《Ceramics International》2017,43(14):10691-10697
Al2O3 multi-phase composites with different volume fractions of SiC varying from 0 vol% to 30.0 vol% were fabricated by vacuum hot pressing sintering at 1600 °C under the pressure of 30 MPa for 2.0 h. The aim of this work was to investigate the effect of SiC content on the morphology and mechanical properties of the Al2O3 multi-phase composite. The results show that the addition of SiC and Ti can produce new strengthening and reinforcing phases include Ti3SiC2, TiC, Ti5Si3, which would hamper the migration of grain boundaries and promote sintering. The mechanical performances could reach the comprehensive optimal values for 20.0 vol% SiC, delamination and transgranular fracture being the major crack propagation energy dissipation mechanisms.  相似文献   

6.
This paper focuses on the preparation of near‐net‐shaped dense Ti3SiC2‐based materials via an indirect three‐dimensional printing (3D printing) and postreactive melt infiltration (RMI) processes. TiC preforms with bimodal pore size distribution were fabricated through 3D printing, followed by the infiltration of Si melt and Al–Si alloy (Al40Si60 and Al70Si30). Dense composites with density of ~4.1 g/cm3 were obtained after the infiltration. No volume shrinkage was obtained after the reactive infiltration with Al–Si alloy. The participation of Al during the infiltration process promoted the formation of Ti3SiC2. The as‐fabricated Ti3SiC2‐based materials showed enhanced mechanical and electromagnetic interference shielding properties.  相似文献   

7.
《Ceramics International》2021,47(23):33064-33069
In this paper, Mg2Ti1-xAl4/3xO4 ceramics (0.01 ≤ x ≤ 0.09) were synthesized through conventional solid-state ceramic route. The cubic spinel structure, microstructure and microwave properties of Mg2Ti1-xAl4/3xO4 (x = 0.01, 0.03, 0.05, 0.07, 0.09) ceramics were investigated by X-ray diffraction, Raman spectra, infrared spectra. Rietveld refinements confirm that a spinel structure phase with space group Fd-3m is formed. The variation of the permittivity was concerned with the ionic polarizability, and the value of τf was influenced by the bond valence. Both Q × f values and relative density showed an identical trend. Intrinsic properties of Mg2Ti1-xAl4/3xO4 ceramics were analyzed by infrared spectra and Raman spectra. In addition, the Mg2Ti1-xAl4/3xO4 ceramic sintered at 1420 °C for 4 h possessed optimal dielectric properties (εr = 14.65, Q × f = 182347 GHz, τf = −57.7 ppm/°C) when x = 0.09.  相似文献   

8.
《Ceramics International》2015,41(6):7626-7631
Ti3Si(1−x)AlxC2 (x=0–1) quarternary MAX phase materials were prepared by spark plasma sintering of TiC, Ti, Si and Al powder mixtures at 1200 °C. Effect of Al addition on lattice parameters, density and hardness were investigated. Impurities are limited to binary phases of TiC and Ti5Si3. No multinary compound other than Ti3Si(1−x)AlxC2 can be detected. TiC exists as impurity in all samples and trace amount of Ti5Si3 can be detected in Samples x=0.1–0.6. Oxidation of Al cannot be avoided although all sintering were performed under vacuum and trace amount of Al2O3 can be found in all samples with Al addition. Experimental results show that the lattice parameters a and c increase linearly with increasing Al content for x=0–1. The lattice variations are strongly anisotropic and follow Vegard׳s law. Both density and hardness decrease as Al content increases. The linear variation of lattice parameters, d spacings of crystalline faces and density against Al concentration suggest that continuous solid solutions of Ti3Si(1−x)AlxC2 (x=0–1) may have been formed between Ti3SiC2 and Ti3AlC2.  相似文献   

9.
Based on the structure characteristic of Ti3SiC2 and the easy formation of Ti3Si1−xAlxC2 solid solution, a transient liquid phase (TLP) bonding method was used for bonding layered ternary Ti3SiC2 ceramic via Al interlayer. Joining was performed at 1100–1500 °C for 120 min under a 5 MPa load in Ar atmosphere. SEM and XRD analyses revealed that Ti3Si(Al)C2 solid solution rather than intermetallic compounds formed at the interface. The mechanism of bonding is attributed to aluminum diffusing into the Ti3SiC2. The strength of joints was evaluated by three point bending test. The maximum flexural strength reaches a value of 263 ± 16 MPa, which is about 65% of that of Ti3SiC2; for the sample prepared under the joining condition of 1500 °C for 120 min under 5 MPa. This flexural strength of the joint is sustained up to 1000 °C.  相似文献   

10.
Experimental and thermodynamic studies of the hydrothermal oxidation behavior of Ti3Si0.9Al0.1C2 powders were performed at 500–700 °C under a hydrostatic pressure of 50 MPa. Titanium, silicon and aluminum were selectively extracted from Ti3Si0.9Al0.1C2 during hydrothermal oxidation, resulting in the formation of oxides and disordered carbon. A comparative investigation with Ti3SiC2 disclosed the evident influence of Al dopant on the hydrothermal oxidation process, i.e. delaying the phase transformation from anatase to rutile, promoting the formation of carbon, the crystallization of silica and decomposition of Ti3Si0.9Al0.1C2. The corresponding mechanism was discussed.  相似文献   

11.
The Cf/Ti3SiC2 composites were fabricated through spark plasma sintering (SPS) and hot isostatic pressing (HIP), TiC coated Cf and Ti3SiC2 powder were used as starting materials. The improved fracture toughness (KIC) and Vickers hardness (HV1) of the TiC coated Cf/Ti3SiC2 composite fabricated by SPS were 7.59 MPa·m1/2 and 7.28 GPa. On this foundation, taking the advantage of better sintering process of HIP, the highest KIC and HV1 achieved 8.32 MPa·m1/2 and 9.24 GPa with fiber content of 10 vol%, which increased by 40% and 65% compared with that of monolithic Ti3SiC2. The reasonable control of reactive interface is the main factor for the improved mechanical properties of the composites, the TiC coating effectively protected the fiber structure from interfacial reaction compared with that of the non-coated Cf/Ti3SiC2. Meanwhile, the artificially designed and weakly bonded TiC coated Cf can fully exert the toughening mechanisms like fiber pull-out and debonding.  相似文献   

12.
In view of the lack of a conformal, load-bearing, lightweight, and high-temperature resistant integrated microwave-absorbing composites for applications under extremely complex conditions, this study successfully applies gel casting craft to porous Si3N4 microwave-absorbing composites. The high-temperature decomposition reaction of Ti3SiC2 powder was utilized to generate uniform Ti-Cx-N1−x grains in situ and to enhance the mechanical and microwave-absorption properties of porous Ti-Cx-N1−x/Si3N4 composites. The bending strength, fracture toughness, density, maximum reflection loss value, absorption bandwidth and matched thickness in P-band of the composite with 30 wt% Ti3SiC2 addition were 164.87 ± 7.56 MPa, 2.61 ± 0.13 MPa·m1/2, 2.077 g/cm3, 32.42 dB, 1.74 GHz and 4.2 mm, respectively. The fracture toughness and bending strength of the composite were increased by 71.71% and 58.13%, respectively, compared with monolithic porous Si3N4. The electromagnetic wave loss mechanisms of the composites are proposed as a combination of conductivity loss, multiple reflections and scattering, interfacial polarization and defect polarization.  相似文献   

13.
Ti3SiC2/3Y-TZP (3 mol% Yttria-stabilized tetragonal zirconia polycrystal) composites were fabricated by spark plasma sintering (SPS). The effect of Ti3SiC2 content on room-temperature mechanical properties and microstructures of the composites were investigated. The Vickers hardness and bending strength of the composites decreased with the increasing of Ti3SiC2 content whereas the fracture toughness increased. The maximum fracture toughness of 9.88 MPa m1/2 was achieved for the composite with 50 vol.% Ti3SiC2. The improvement of the fracture toughness is owing to the crack deflection, crack bridging, the transformation toughening effects.  相似文献   

14.
Ti3AlC2/Al2O3 in situ composites with different Al2O3 contents were successfully synthesized from the powder mixture of Ti, TiC, Al and TiO2 by a reactive hot-pressing method at 1350 °C. The effect of Al2O3 on the microstructure and mechanical properties of the composites was investigated in detail. The results indicate that the as-fabricated products mainly consist of Ti3AlC2, Al2O3 and a small amount of TiC. With increasing the Al2O3 content, the flexural strength of Ti3AlC2/Al2O3 composites increase gradually, the fracture toughness reaches the peak value of 8.21 MPa m1/2 as the Al2O3 content increasing to 9 wt%, the hardness attains the maximum value of 10.16 GPa for 12 wt% Al2O3. The strengthening mechanism of the composites was also discussed.  相似文献   

15.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

16.
《Ceramics International》2020,46(7):8845-8852
Al2O3-SiCw toughened ceramic tools play vital role in high-speed machining of nickel-based superalloys due to their superior mechanical properties. Herein, owing to synergistic toughening mechanism, α-Si3N4 particles are employed as reinforcement phase into Al2O3-SiCw ceramic composite to optimize mechanical properties of Al2O3-SiCw ceramic tools. Moreover, the influence of Si3N4 content and sintering parameters on microstructure and mechanical properties of Al2O3-20 vol%SiCw ceramic tool material is systematically investigated. Results reveal that appropriate amount of Si3N4 particles is required to effectively increase the density of Al2O3-SiCw ceramic composites. The presence of Si3N4 particles leads to formation of novel β-sialon phase during hot-press sintering, which effectively enhances fracture toughness and flexural strength of Al2O3-SiCw ceramic composites. It is observed that grain size of newly formed β-sialon phase is extremely sensitive to hot-pressing sintering conditions. The degree of chemical transformation of α-Si3N4 into Si6-zAlzOzN8-z (β-sialon) and z-value of Si6-zAlzOzN8-z are significantly influenced by sintering temperature. Overall, Al2O3-20 vol%SiCw-15 vol%Si3N4 ceramic tool material, with 1.5 vol%Y2O3-0.5 vol%La2O3-0.5 vol%CeO2 (YLC) sintering additive, rendered optimal mechanical properties after sintering at 1600 °C under 32 MPa for 30 min. Improved mechanical performance can be ascribed to synergistic toughening and strengthening influence of whiskers and particles.  相似文献   

17.
The thermal decomposition of Ti3SiC2 in vacuum furnace up to 1500°C has been investigated. The results show that the mild decomposition of Ti3SiC2 commences at 1300°C and the higher the holding temperature, the larger the volatilization of Si atoms. The Ti3SiC2 decomposition occurs simultaneously on the surface and in the bulk. Four phases coexist at 1400°C and 1450°C and the Ti5Si3Cx phase appears in the bulk and/or surface. Diffusion distance, rate, and volatilization of Si contribute to the porous structure and the presence of Ti5Si3Cx. The evolution of furnace pressure reflects the decomposition kinetics of Ti3SiC2.  相似文献   

18.
《应用陶瓷进展》2013,112(7):394-398
Abstract

Abstract

Highly densified Al2O3-TiC-Ti3SiC2 composites were fabricated by spark plasma sintering technique and subsequently characterised. From fracture surface observation, it is found that Al2O3 is 0·2-0·4?μm, TiC is 1-1·5?μm and Ti3SiC2 is 1·5-5?μm in grain size. With the increase in Ti3SiC2 volume contents, Vickers hardness of the composites decreases because of the low hardness of monolithic Ti3SiC2. The fracture toughness rises remarkably when the contents of Ti3SiC2 increase, which is attributed to the pullout and microplastic deformation of Ti3SiC2 grains. At the same time, the flexural strength of the composites shows a considerable improvement as well. The electrical conductivity rises significantly as the Ti3SiC2 contents increase because of the formation of Ti3SiC2 network and the increase in conductive phase contents.  相似文献   

19.
Near-fully dense Ti3Si(Al)C2/Ti5Si3 composites were synthesized by in situ hot pressing/solid–liquid reaction process under a pressure of 30 MPa in a flowing Ar atmosphere at 1580 °C for 60 min. Compared to monolithic Ti3Si(Al)C2, Ti3Si(Al)C2/Ti5Si3 composites exhibit higher hardness and improved wear resistance, but a slight loss in flexural strength (about 26% lower than Ti3Si(Al)C2 matrix). In addition, Ti3Si(Al)C2/Ti5Si3 composites maintain a high fracture toughness (KIC = 5.69–6.79 MPa m1/2). The Ti3Si(Al)C2/30 vol.%Ti5Si3 composite shows the highest Vickers hardness (68% higher than that of Ti3Si(Al)C2) and best wear resistance (the wear resistance increases by 2 orders of magnitude). The improved properties are mainly ascribed to the contribution of hard Ti5Si3 particles, and the strength degradation is mainly due to the lower Young's modulus and strength of Ti5Si3.  相似文献   

20.
The Ti3Al1.2−xSixC2 (x = 0, 0.2, 0.4) powders were synthesized from Ti, Al, Si, and TiC powders, and nearly pure Ti3Al1.2−xSixC2 bulks were fabricated by the means of two-time hot-pressing method. Significant strengthening effect in bulks was found after the addition of 0.2 Si and 0.4 Si to form Ti3Al(Si)C2 solid solutions. The flexural strengths of Ti3AlSi0.2C2 and Ti3Al0.8Si0.4C2 were 485 and 554 MPa, 14% and 30% larger than the strength of Ti3AlC2, respectively. The Vickers hardness of these compounds were separately, 6.95 and 7.57 GPa, representing the enhancements of 37% and 49% over those of Ti3AlC2. The tribological behavior was studied by dry-sliding method with a S45C steel at the sliding speed of 30 m/s and the normal load of 20-80 N. The results showed that after incorporating different contents of Si, the friction coefficient was between 0.22 and 0.30, correspondingly lower wear rate was 3.19-2.61 × 10−6 mm3/Nm. These excellent tribological performances were attributed to the presence of continuous self-generated oxidized films during tribological examination. Finally, the phase compositions and microhardness of the oxidized films were analyzed and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号