首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2016,42(11):13018-13023
Yb3+ doped ZnO/MgO nanocomposite were prepared by combustion synthesis method. The samples were further heated to 1000 °C to improve their crystallinity and photoluminescent efficiency. The concentrations of Yb3+ and Mg2+ were varied between 1–2% and 5–70% respectively in prepared samples. The nano-powders were characterized by Scanning Electron Microscopy and X-ray Diffraction for morphology and structural determination. XRD studies have revealed the wurtzite structure for MgxZn1−xO for Mg concentrations below 30%. Higher concentrations of Mg results in Yb3+ doped ZnO/MgO nanocomposite containing three phases; the wurzite hexagonal phase typical of ZnO, the cubic phase of MgO and a small amount of cubic Yb2O3 phase. As expected, the amount of cubic phase in nano-powders increased with the increase of Mg concentration in ZnO. The crystallite size of ZnO/MgO composites decreased from 55 nm to 30 nm with increase of Mg content. SEM images of Yb3+ doped ZnO/MgO nanocomposite with higher Mg content (>50%) showed clearly distinct hexagonal and cubical shaped nano-particles. Photoluminescent emission showed a broad band in the range (435 nm to 700 nm). Pure ZnO nano-phosphor showed an emission peak around 545 nm, which is blue shifted with Mg content. The photoluminescence intensity increased with increase of Mg content in ZnO and it became maximum with 30% Mg concentration. Time resolved decay curves of photoluminescence indicated decay time in microsecond time scale.  相似文献   

2.
《Ceramics International》2016,42(11):13151-13160
In this work, we employed an impurity-free nanoparticle synthesis technique, known as pulsed laser ablation in liquid (PLAL), to integrate titanium dioxide nanoparticles (TiO2 NPs) into zinc oxide nanorods (ZnO NRs) with varying relative proportions. The main objective of this integration was to enhance the charge carrier separation of photo-generated electron hole pairs during solar irradiation. For the synthesis process, an Nd:YAG laser at 532 nm wavelength was applied as an ablation source, along with deionized water as a solvent medium in which the precursor materials were dispersed prior to laser irradiation. The nanocomposites were characterized by X-ray diffraction (XRD), UV–vis absorption and in-situ Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FE-SEM). The synthesized nanocomposites were primarily utilised in two applications: firstly, as a catalyst in the degradation of methyl orange (MO) and secondly, as photo-anode in dye sensitized solar cell (DSSC). Our research has demonstrated that optimal performance was obtained for the nanocomposite containing 10% and 90% (by weight) TiO2 NPs and ZnO respectively, which we define as the ideal nanocomposite. Relative to pure ZnO, the photo-conversion efficiency of the ideal composite was improved substantially by 63.73%, whilst the photo-degradation rate was enhanced by 3 fold. The oxidation state and the microstructural of the segregated ideal nanocomposite confirms that oxygen vacancy defects were created when perfect surface integration occurs between TiO2 and ZnO. Nonetheless, we believe that the performance enhancement is predominantly due to the excellent charge carrier separation and fast interfacial electron flow in this nanocomposite.  相似文献   

3.
《Ceramics International》2022,48(1):266-277
Pure ZnO and ZnO–Bi2O3 nanocomposites with 5 wt% and 10 wt% of Bi2O3 content were synthesized using the co-precipitation method. Optical properties such as refractive index (n), extinction coefficient (k), bandgap (Eg), and Urbach energies, as well as the band structure, were determined by modeling the experimental transmittance and reflectance UV–Vis spectra. The deduced bandgap and Urbach energies for pure ZnO (3.758 eV) increase with the increase of the doping degree of Bi2O3 in ZnO–Bi2O3 nanocomposite films. X-ray diffraction and scanning electron microscopy (SEM) was used to study the structural and morphological properties of these nanocomposite films. Pure ZnO and nanocomposites with Bi2O3 exhibit crystalline domains with wurtzite hexagonal structures, and as the doping degree of Bi2O3 increases, the crystallite size decreases. Based on SEM micrographs, the ZnO nanoparticles (NPs) structure shows the presence of aggregation. Moreover, Bi2O3 NPs in the nanocomposite film led to the further aggregation in the form of large rods. The elemental and chemical properties of the nanocomposites were investigated using infrared and energy-dispersive X-ray spectroscopy. The charge transfer process in the studied system is between ZnO and Bi2O3 conduction bands. Density-functional theory (DFT) calculations were performed for ZnO, Bi2O3, and ZnO-Bi2O3 compounds to investigate structural, optical, and electronic properties, being in agreement with the experimental results.  相似文献   

4.
The two-solvent method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/SBA-15). The prepared ZnO/SBA-15 samples have been studied by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm, and photoluminescence spectroscopy. The ZnO/SBA-15 nanocomposite has the ordered hexagonal mesostructure of SBA-15. ZnO clusters of a high loading are distributed in the channels of SBA-15. Photoluminescence spectra show the UV emission band around 368 nm, the violet emission around 420 nm, and the blue emission around 457 nm. The UV emission is attributed to band-edge emission of ZnO. The violet emission results from the oxygen vacancies on the ZnO–SiO2 interface traps. The blue emission is from the oxygen vacancies or interstitial zinc ions of ZnO. The UV emission and blue emission show a blue-shift phenomenon due to quantum-confinement-induced energy gap enhancement of ZnO clusters. The ZnO clusters encapsulated in SBA-15 can be used as light-emitting diodes and ultraviolet nanolasers.  相似文献   

5.
《Ceramics International》2023,49(4):5613-5620
This study proposes a simple, effective, and environmentally friendly approach for the synthesis of zinc oxide/silver nanoparticles (ZnO/Ag NPs) using three different plant extracts. The plants used in this study were moringa oleifera (MO), mentha piperita (MP), and citrus lemon (CL). Characterizations of ZnO/Ag NPs were done using ultraviolet–visible spectroscopy (UV vis), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) along with energy dispersive spectroscopy (EDX), and fourier transform infrared spectroscopy (FTIR). In accordance with size distribution findings, ZnO/Ag NPs synthesized with MO have a narrow size distribution, with the average particle size being 119 ± 36 nm. Among these three reducing agent MO act as the best reducing agent. Moreover, the anticancer activity of silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and ZnO/Ag NPs synthesized with MO were demonstrated in human cervical cancer cells (HeLA). The results revealed that ZnO/Ag NPs demonstrate in vitro cell viability of 72%, 81%, and 84% using 2.5, 5, and 10 μgml?1of ZnO/Ag NPs for 24 h. While Ag NPs and ZnO NPs prepared with MO showed 50% and 60% cell viability using 2.5 μgml?1concentration for 24 h. This showed that the ZnO/Ag NPs act as a strong anticancer agent compared to Ag NPs and ZnO NPs. Overall, this research proposes a green synthesis approach for ZnO/Ag NPs with a wide range of potential uses, particularly in biomedicine.  相似文献   

6.
In this paper, photoluminescence (PL) behavior of MgxZn1?xO/MCM-41 nanocomposite (where x = 0.05, 0.15, 0.25 and 0.30) is reported. Samples were characterized with small angle X-ray diffraction (SAXRD), wide angle XRD, BET (Brunauer–Emmet–Teller) surface area and pore size analyzer, field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscope (HR-TEM) and PL spectrometer. The structure of MCM-41 was confirmed from both SAXRD and BET results. A broad PL band positioned at around 393 nm has been exhibited by ZnO/MCM-41 nanocomposite. With Mg doping, intensity of this PL band decreased for x = 0.05 and 0.15 and above this there was gradual enhancement in intensity. It was found that the intensity of the PL band, strongly depends on the particle size of ZnO. The increase in particle size along with MgO phase separation for x = 0.30 was proved by HR-TEM analysis. Interestingly, the differences in particle sizes at different concentrations of Mg did not account for shift in the PL band. A twofold enhancement in the intensity of PL band when x = 0.30 compared to bare ZnO/MCM-41 nanocomposite was observed. It is attributed for the increase in particle size which preserves the energy saved by passivation of ZnO nanoparticles and the other one is formation of heterojunction structures between ZnO and MgO. It was also evident from these results that there is increase in oxygen vacancies of ZnO crystallites with increase in particle size.  相似文献   

7.
《Ceramics International》2021,47(21):30020-30029
The presence of gold nanoparticles (Au) on the zinc oxide (Zn)-titanium oxide nanotubus (TiNTs) composites to form the Z-scheme type photocatalysts has been investigated for photocatalytic reduction of CO2 to methanol. In this study, the commercial titanium dioxide powder (P-25) was first treated under a strong basic environment and applied a hydrotherrmal method to systhsize TiNTs, and calcined to use as a support. Then, various ratios of ZnO and TiNTs from 0.1 to 0.5 were also prepared by hydrothermal method to form TiNTs-ZnO-X (TZ-X, X is equal to the ZnO/TiNTs weight ratio) composites, and 1 to 5 wt % of Au were impregnated on the TiNTs-ZnO support to form the ZnO–Au-TiNTs composite photocatalysts.The catalysts will be characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible spectroscopy (UV–Vis) and photoluminescence spectroscopy (PL) techniques to determine the structures and morphology of the ZnO–Au-TiNTs composites. The catalytic results have revealed that the TZ-0.20–2 wt% Au catalyst has the best photocatalysis activity with a 7777.1μmole/(g-cat) (hr) CH3OH production yield.The formation of the ZnO–Au-TiNTs Z-scheme type heterostructure results in an efficient electron transfer pathway and electron-hole separation inside the composite catalyst which lead to a highly efficient CO2 reduction and excellent improvement in methanol yield.  相似文献   

8.
In this paper, polycrystalline zinc oxide (ZnO) nanostructures have been prepared by a hydrothermal synthesis through rapid microwave heating (180 s). The structure, composition and optical properties of the products were examined by scanning electron microscopy (SEM), energy dispersive x-ray spectrum (EDS), ultraviolet–visible spectroscopy (UV–vis), x-ray diffraction (XRD), photoluminescence spectroscopy (PL) and Raman spectroscopy. Typically, the synthesized nanostructures were zinc-rich with diameter ranging from 20 nm to 200 nm in length. From the Raman spectroscopy and PL measurements, it was found that the as-deposited films contain vacancy defects that originated from the rapid synthesis process.  相似文献   

9.
Zn1−xAgxO nanoparticles (NPs) (x=0, 0.02, 0.04, and 0.06) were synthesized by a sol–gel method. The synthesized undoped ZnO and Zn1−xAgxO-NPs were characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV–visible spectroscopy. The XRD patterns indicated that undoped and Ag-doped ZnO crystallize in a hexagonal wurtzite structure. The TEM images showed ZnO NPs with nearly spherical shapes, with particle size distributed over the nanometer range. Evidence of dopant incorporation is demonstrated in the XPS measurements of the Ag-doped ZnO NPs. The Raman measurements indicated that the undoped and Ag-doped ZnO-NPs had a high crystalline quality. From the result of UV–vis, the band-gap values of prepared undoped and Ag-doped ZnO were found to decrease with an increase in Ag concentration. The obtained undoped and Ag-doped ZnO nanoparticles were used as a source material to grow undoped and Ag-doped ZnO nanowires on n-type Si substrates, using a thermal evaporation set-up. Two probe method results indicated that the Ag-doped ZnO nanowires exhibit p-type properties.  相似文献   

10.
The effect of the ZnO/MgO ratio on the crystallization and optical properties of glass‐ceramic glazes from the SiO2–Al2O3–ZnO–MgO–CaO–K2O–Na2O–B2O3 system was studied. The glazes with different ZnO/MgO ratios were characterized by differential scanning calorimetry, X‐ray powder diffraction, Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy analysis and a spectrophotometer. The results reveal that the A glaze without ZnO content contains forsterite and sapphirine. The B and C glazes with intermediate ZnO/MgO ratio contain enstatite and spinel solid solution. The D to F glazes with higher ZnO/MgO ratio crystallize spinel solid solution as the only crystalline phase. The amount of spinel solid solution, lightness values (L*), gloss values and the reflectance of the studied glazes increase with the ZnO/MgO ratio.  相似文献   

11.
Different thickness MgO thin films were grown on the glass substrate by successive ionic layer adsorption and reaction (SILAR) method as the first study in literature. X-ray diffraction (XRD) measurements demonstrate the cubic MgO structures and samples have (002), and (220) peaks. All film has nanoball structures observed from the scanning electron microscope (SEM) images. The band gap and transmittance values of MgO thin films decrease with increasing thickness. The photoluminescence (PL) spectrum demonstrates that samples have three visible emissions changing with thickness at 381?nm violet emission, 457?nm blue emission and 535?nm green emission. X-ray photoelectron spectroscopy (XPS) spectrum present confirms the elemental signals from carbon (C), oxygen (O) and magnesium (Mg) atoms in the sample. Both Moss and Herve and Vandamme relations refractive index values n, ε0, and ε values and amount of oxygen increase with raising thickness of MgO thin films.  相似文献   

12.

At present, there is a vital need for river water purification by developing new approaches to eliminate bacterial biofilms, textile dyes, and Low-Density Polyethylene (LDPE) plastics that pose severe threats to human and environmental health. The current work put forward the construction of an eco-friendly green strategy to synthesize zinc oxide nanoparticles (ZnO NPs) using areca nut (Areca catechu) extract and their application to tackle the challenges in water purification. Prepared biogenic NPs were characterized by X-ray diffraction analysis (XRD), Fourier Transform Infra-Red (FT-IR), Energy Diffraction Spectroscopy (EDS), Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM) analysis, confirmed the spherical shape in 20 nm and UV–vis spectroscopy. The characteristic absorption band exhibited at 326 nm confirmed the formation of ZnO NPs using UV–vis spectroscopy. Among all the tested bacterial pathogens, the E. coli at 50 µg/mL concentration showed the highest inhibition of biofilm activity, followed by the highest growth curve, cellular leakage, and potassium ion efflux. The ZnO NPs observed with photo-degradation of Rhodamine-B (Rh-B), Methylene Blue (MB), and Nigrosine dyes under sunlight irradiation at different time intervals. Finally, the photocatalytic activity of LDPE-ZnO NPs nanocomposite film showed the highest degradation under solar light irradiation were confirmed through photo-induced weight loss, SEM, FTIR, and MALDI-TOF analysis. This study demonstrates ZnO NPs exhibit efficacy against biofilm formation, degradation of photocatalytic textile dyes, and low-density LDPE film under solar light irradiation, which can be a step forward in water purification.

  相似文献   

13.
《Ceramics International》2022,48(17):24619-24628
Eco-friendly synthesis of Mg doped ZnO NPs was prepared by Ficus religiosa leaf extract. XRD confirmed the crystalline structure of the prepared Mg-doped ZnO. The functional groups and Zn and O bonding were realized from FTIR and Raman analyses. The surface plasma resonance absorption peak at 363 nm affirmed the formation of Mg–ZnO nanoparticles. The 3.32eV bandgap value of Mg–ZnO NPs was calculated by using Tauc's plot. The photoluminescence spectrum showed the emission behavior and point defect arising from zinc, oxygen vacancies. The hexagonal wurtzite structure of the prepared nanoparticles was observed from FESEM images. From the EDAX study, the elemental compositions have confirmed.The Thermal studies(TG/DTA)study,the Mg doped ZnO Material become thermally stable at 600 °C In XPS spectrum shows good formation of Mg doped ZnO nano materialThe facile synthesized Mg–ZnO NPs using Ficus religiosa leaves showed better antimicrobial properties on gram-positive bacterium, Staphylococcus aureus and fungus, Aspergillus niger. The biomedical behavior of prepared Mg–ZnO NPs was clearly understood from antioxidant(500 μg/mL-87), anti-inflammatory(500 μg/mL-89) and anti-diabetic assays(500μg/mL-82)  相似文献   

14.
A green method by Verbascum speciosum was used to synthesize zinc oxide nanoparticles (ZnO NPs). ZnO NPs were coated with silver to synthesize Ag–ZnO nanocomposite (NCs). The physicochemical properties of Ag–ZnO NCs were analyzed by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential. The FTIR indicated the peak of Zn–O vibration and some hydroxyl and carboxyl groups. PXRD analyses confirmed the synthesis of ZnO NPs and Ag–ZnO NCs. Due to the size of the crystallite obtained from PXRD, solid-phase sizes (from FESEM and TEM images), and dynamic sizes from DLS, agglomeration was observed. The Ag–ZnO NCs showed a negative charge surface (?49.3 mV). Ag–ZnO NCs had a high antibacterial activity towards two most important infectious bacteria (i.e., Escherichia coli and Staphylococcus aureus) and anticancer activity against human liver-carcinoma cells (HepG2). Later, it depended on time and concentration of Ag–ZnO NCs. The cytotoxicity properties of Ag–ZnO NCs were also studied against NIH-3T3 as a normal cell, where the results verified the lower cell toxicities of nanocomposite than the HepG2.  相似文献   

15.
We extended our work to a fast and facile nanocomposites (NCs) manufacturing by incorporation of ZnO nanoparticles (NPs) on to a recycled poly(ethylene terephthalate) PET as a polymer matrix prepared by a dissolution/reprecipitation method. The surface of ZnO NPs was functionalized with synthesized optically active diacid containing alanine amino acid. Organo‐modified NPs which provided using solution blending technique through ultrasonic irradiation, were embedded into recycled PET. PET@ZnO/DA NCs containing different loadings of functionalized NPs (1, 3, 5 wt %) were investigated by thermal gravimetric analysis, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy and UV–visible spectroscopy. Morphological studies revealed uniformly dispersed ZnO/DA NPs in the polymer matrix. The crystalline nature of PET slightly improved as a function of the NPs concentration. Char yield in TGA and LOI values indicated that the obtained NCs were capable of exhibiting flame retardant properties. The NCs were found to exhibit more absorbance in the UV and visible region in compare to the neat PET. The effect of ultrasonication in different solvent on the morphology of the recycled polymer particle was also studied. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43433.  相似文献   

16.
The present work describes the synthesis and properties of polymer composites based on poly(vinyl pyrrolidone) (PVP) as polymer shell and poly(amide-imide)(PAI)/ZnO nanocomposite (ZNC) as efficient filler. At first, the alanine amino acid containing dicarboxylic acid was grafted on the surface of ZnO NPs. Then, modified ZnO (12 wt%) was incorporated into the PAI matrix under ultrasonic irradiations. The obtained hybrid ZNC showed high thermal stability and the size of the NPs in the TEM image of ZNC was about 31 nm. Secondly, PVP NCs with different ZNC loadings such as 2, 4 and 6 wt% were prepared via ultrasonication. Transmission electron microscopy (TEM) observations showed that the ZnO NPs were uniformly and highly dispersed in the PVP matrix. The UV–vis results exposed that the high UV-shielding efficiency of the obtained composites. Thermal analysis represented that the onset decomposition temperatures of the obtained PVPNCs had remarkable increasing in compared to the neat PVP due to the presence of both ZnO NPs and PAI.  相似文献   

17.
Nanoparticles of zinc oxide and of ZnO doped with MgO in different concentrations (1, 2 and 4 mol%) were synthesized in a controlled and reproducible way, using the Pechini polymer precursor method. To determine the physicochemical and structural characteristics of the synthesized nanoparticles, Fourier transform IR (FTIR), X-ray diffraction (XRD), UV–Vis spectroscopy and transmission and scanning electron microscopy (TEM and SEM) were used. Characterization revealed the particles obtained to be nanometric in size (<50 nm) and with a deformed hexagonal morphology. Taking into account the doping percentage, the energy gap value varied between 3.3 eV for pure ZnO and 3.45 eV for ZnO with 4 mol% of Mg, which indicates that the optical properties of these nanoparticles were affected by dopant concentration. The effect of doping with Mg2+ on the capacity for removal of pollutant molecules by ZnO, for different working conditions, was evaluated by studying the removal of methyl orange (MO) in aqueous solution. Irradiation of the compounds led to a greater removal of MO from the solution such that all ZnO samples doped with MgO showed higher photoactivity than ZnO. The ZnO nanoparticles doped with 2% Mg were the most efficient in removing MO, achieving a removal percentage of ~73% after 2 h of testing and a totally transparent solution after 3 h of treatment. The kinetics of removal of MO promoted by this sample was best represented by pseudo-first-order kinetics. The results of this work showed that on combining a photosensitive semiconductor, ZnO, with a wide band gap insulator, MgO, Zn–Mg solid solutions are obtained that showed adequate capacity to remove contaminating organic molecules, specifically MO.  相似文献   

18.
《Ceramics International》2020,46(6):7850-7860
The laser sintering mechanism of composites based on magnesia and oxide nanoparticles was studied in terms of nanoparticle concentration and laser energy fluence. Iron oxide and aluminum oxide nanoparticles were mechanically mixed with magnesia (MgO) powder (5, 7 and 10 wt%) and the compacted pellets were irradiated with the fundamental output (1064 nm) of a pulsed Nd:YAG laser at 2.5 and 3.0 J/cm2. Crystal structure, elemental composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. X-ray diffraction results confirmed the crystalline phases and spinel formation by addition of oxide nanoparticles and laser sintering. X-ray photoelectron spectroscopy analysis confirmed their surface composition and chemical states of the corresponding elements. Morphological changes were observed due to the laser fluence and the oxide nanoparticle concentrations. Results show that a coarsening mechanism was predominant with a high energy fluence and concentration of oxide nanoparticles.  相似文献   

19.
Nanosized MgO is a functional material showing a great promise as destructive adsorbent for toxic chemical agents, unique optical electronic, magnetic, thermal, and mechanical properties, as well as in good bactericidal performance in aqueous environments and in the cancer therapy. In this study, MgO nanoparticles are obtained by thermal decomposition of nanosized Mg(OH)2, which are synthesized by means of an innovative, time and cost‐effective, scalable, and patented method. The nanoparticles are characterized by means of several techniques such as thermal analyses, X‐ray diffraction analysis, infrared spectroscopy, transmission electron microscopy, atomic force microscopy, and surface area measurements (BET). After a pseudomorphic decomposition of the hydroxide precursor, pure and crystalline MgO nanoparticles are obtained. These nanoparticles are roughly spherical, monodispersed, and monocrystalline, having size ≤10 nm. Moreover, they exhibited a surface area up to 178 m2/g, revealing a bimodal mesoporous distribution with the important part of the pores with dimensions peaked at 4.87 nm.  相似文献   

20.
《Ceramics International》2016,42(3):4462-4469
In this work, a simple and versatile technique was developed to prepare highly crystalline ZnO nanoparticles (ZnO NPs) by organic precursor method using 5, 6 dimethyl benzimidazole and Zn(CH3COO)2·2H2O followed by calcination. These synthesized ZnO NPs were used as a drug carrier to form 5-Fluorouracil (5 Fu) encapsulated ZnO NPs by varying the molar ratio (100–300:1) of ZnO NPs to 5-Fu. X-ray diffraction (XRD) results indicated that the ZnO NPs had single phase nature with the wurtzite structure. Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) results showed nanometer dimension of the NPs. FTIR analysis further reaffirmed the formation/encapsulation of ZnO NPs. UV–vis spectroscopy determined the encapsulation efficiency (EE) and loading capacity (LC) of 5-Fu drug on ZnO NPs. HPLC analysis of encapsulated NPs indicated release of 5-Fu was higher at tumor cell pH (pH 6.0) than physiological pH. Moreover, the anti-tumor activity of ZnO NPs and 5-Fu-encapsulated ZnO NPs investigated using flow cytometry demonstrated that 5-Fu encapsulated ZnO NPs have more anti-tumor activities than 5-Fu itself toward MCF-7 (Breast cancer) cell line. Also, cytotoxicity of MCF-7 increased with the increase of ZnO NPs: 5-Fu ratio. This research will introduce a new concept to synthesize 5-fluorouracil encapsulated ZnO NPs and its application towards the cancer cell line. Thus, the ZnO NPs could not only apply as the drug carrier to deliver 5-Fluorouracil into the cancer cells, but also enhances anti-tumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号