首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Ceramics International》2021,47(20):28859-28865
Highly transparent polycrystalline Tm2O3 ceramics were successfully fabricated by vacuum sintering at temperatures from 1650 to 1850 °C for 8 h using commercial Tm2O3 and ZrO2 (1 at%) powders as starting materials. It is the first time that ZrO2 was reported as a sintering additive to prepare Tm2O3 transparent ceramics. The effects of sintering temperature on the optical transmittance and microstructure of Tm2O3 transparent ceramics were studied. The desired Tm2O3 ceramics with relative density of 99.8% and an average grain size of approximately 9.7 μm were obtained at 1800 °C and the in-line transmittance reached 75% at 880 nm and fluctuated around 80% from 2100 to 2400 nm, respectively. This study demonstrated that Tm2O3 transparent ceramics with higher in-line transmittance and smaller grain size could be prepared by using ZrO2 as sintering additive at a relatively lower vacuum sintering temperature compared to those already reported in open literatures.  相似文献   

2.
《Ceramics International》2016,42(3):4238-4245
High optical quality Y2O3 transparent ceramics with fine grain size were successfully fabricated by air pre-sintering at various temperature ranging from 1500 to 1600 °C combined with a post-hot-isostatic pressing (HIP) treatment using co-precipitated powders as the starting material. The fully dense Y2O3 transparent ceramic with highest transparency was obtained by pre-sintered at 1550 °C for 4 h in air and post-HIPed at 1600 °C for 3 h (the pressure of HIP 200 MPa), and it had fine microstructure and the average grain size was 0.96 μm. In addition, the in-line transmittance of the ceramic reached 81.7% at 1064 nm (1 mm thickness). By this approach, the transparent Y2O3 ceramics with fine grain size (<1.6 μm) were elaborated without any sintering aid.  相似文献   

3.
《Ceramics International》2017,43(16):13127-13132
In this study, we report highly transparent Er:Y2O3 ceramics (0–10 at% Er) fabricated by a vacuum sintering method using compound sintering additives of ZrO2 and La2O3. The transmittance, microstructure, thermal conductivity and mechanical properties of the Er:Y2O3 ceramics were evaluated. The in-line transmittance of all of the Er:Y2O3 ceramics (1.2 mm thick) exceeds 83% at 1100 nm and 81% at 600 nm. With an increase in the Er doping concentration from 0 to 10 at%, the average grain size, microhardness and fracture toughness remain nearly unchanged, while the thermal conductivity decreases slightly from 5.55 to 4.89 W/m K. A nearly homogeneous doping level of the laser activator Er up to 10 at% in macro-and nanoscale was measured along the radial direction from the center to the edge of a disk specimen, which is the prominent advantage of polycrystalline over single-crystal materials. Based on the finding of excellent optical and mechanical properties, the compound sintering additives of ZrO2 and La2O3 are demonstrated to be effective for the fabrication of transparent Y2O3 ceramics. These results may provide a guideline for the application of transparent Er:Y2O3 laser ceramics.  相似文献   

4.
《Ceramics International》2016,42(7):8290-8295
Aluminum oxynitride (AlON) powders were synthesized by the carbothermal reduction and nitridation process using commercial γ-Al2O3 and carbon black powders as starting materials. And AlON transparent ceramics were fabricated by pressureless sintering under nitrogen atmosphere. The effects of ball milling time on morphology and particle size distribution of the AlON powders, as well as the microstructure and optical property of AlON transparent ceramics were investigated. It is found that single-phase AlON powder was obtained by calcining the γ-Al2O3/C mixture at 1550 °C for 1 h and a following heat treatment at 1750 °C for 2 h. The AlON powder ball milled for 24 h showed smaller particles and narrower particle size distribution compared with the 12 h one, which was benefit for the improvement of optical property of AlON transparent ceramics. With the sintering aids of 0.25 wt% MgO and 0.04 wt% Y2O3, highly transparent AlON ceramics with in-line transmittance above 80% from visible to infrared range were obtained through pressureless sintering at 1850 °C for 6 h.  相似文献   

5.
Lutetium aluminium garnet (LuAG) ceramics as host materials has been widely used in lighting, laser, displaying and scintillators after doping different rare earth ions. Right selection of raw powder and controlling its characteristics during the preparation can greatly improve the optical quality of transparent ceramics. In this paper, the influence of different pretreatment temperatures of commercial Lu2O3 powders in oxygen atmosphere on solid state sintering of LuAG ceramics was systematically investigated. The pretreatment gradually decreased the specific surface area of Lu2O3 powders and greatly removed the absorbed impurities, which seriously deteriorated the optical quality before. The mean particle size increased from 4.53 to 5.66 μm, and the in-line transmittance of samples (Thickness = 2 mm) at 1064 nm was 68.4% for the pretreated Lu2O3 powder at 1000 °C without any sintering additives. Further increase of pretreatment temperature would lead to the coarsening of Lu2O3 powders and the decrease of sintering activity, which finally resulted in a large number of micro pores in LuAG ceramics. These results revealed that the pretreatment of Lu2O3 powders has prodigious impact on the optical quality of LuAG transparent ceramics, and the adsorbed materials should be removed as much as possible for their applications in lasers or lighting.  相似文献   

6.
0.5 at.% Cr:ZnGa2O4 precursor was synthesized by the co-precipitation method with nitrates as raw materials, using ammonium carbonate as the precipitant. Low-agglomerated Cr:ZnGa2O4 powders with an average particle size of 43 nm were obtained by calcining the precursor at 900℃ for 4 h. Using the powders as starting materials, 0.5 at.% Cr:ZnGa2O4 ceramics with an average grain size of about 515 nm were prepared by presintering at 1150℃ for 5 h in air and HIP post-treatment at 1100℃ for 3 h under 200 MPa Ar. The in-line transmittance of 0.5 at.% Cr:ZnGa2O4 ceramics with a thickness of 1.3 mm reaches 59.5% at the wavelength of 700 nm. The Cr:ZnGa2O4 ceramics can be effectively excited by visible light and produce persistent luminescence at 700 nm. For Cr:ZnGa2O4 transparent ceramics, the brightness of afterglow was larger than 0.32 mcd/m2 after 30 min, which is far superior to that of Cr:ZnGa2O4 persistent luminescence powders.  相似文献   

7.
Fine-grained and dense highly transparent Y2O3 ceramics have been successfully prepared using high sintering activity mesoporous Y2O3 powders without any additive by spark plasma sintering (SPS). The influences of the sintering temperature on microstructure, density, optical, and mechanical properties of SPS-sintered Y2O3 ceramics were studied in detail. As results, the optimal Y2O3 ceramics with high relative density of 99.90% and fine average grain size of 140 nm were obtained at a low sintering temperature of 1140°C and a moderate load pressure of 60 MPa for 5 min. Meanwhile, the dense Y2O3 ceramics with 1 mm thickness after annealing show a high linear transmittance of 78% (close to 94% of the theoretical value) at 2.4–3 µm wavelength. In additions, the Vickers hardness and fracture toughness of samples can reach 8.48 GPa and 1.45 MPa m1/2, respectively. This result proves that the high activity of mesoporous Y2O3 is considered to be an important means for preparing high-performance fine Y2O3 ceramics at low sintering temperature.  相似文献   

8.
《Ceramics International》2022,48(22):33003-33010
The effect of the solid loading (41–50 wt%) of the slurry on granulometric composition and physico-chemical characteristics of Y2O3–Al2O3–Nd2O3 powder mixtures obtained by planetary ball milling has been studied for the first time. It was shown that the particle size distribution of powder, its Zeta potential, and specific surface area depend on the solid loading of the milled slurry and, consequently, on the interparticle distance during milling. The interparticle distance decreases from 200 nm to 142 nm with an increase of solid loading in the range of 41–50 wt%. It was shown that for the solid loading of 47 wt%, the convergence of particles to a distance comparable to their median diameter promotes subsequent clustering of particles. This facilitates the sintering of highly-homogenous ceramics. It was found that solid loadings in the 46–50 wt% range is useful for obtaining high-quality Nd:YAG transparent ceramics. The lowest optical losses optical losses of 1 × 10?3 cm?1 and the highest in-line transmittance of 84.1%@1064 nm were obtained for 1 at.% Nd:YAG transparent ceramics (22 × 3 × 4 mm3) prepared from slurries with 47 wt% solid loading (taking all other ball milling parameters fixed). If the interparticle distance in the powder is higher (solid loading of 41 wt%) than the median particle diameter, the ceramics are characterized by significant residual porosity due to the survival of large particles (insufficient milling).  相似文献   

9.
《Ceramics International》2016,42(12):13812-13818
Terbium doped yttrium aluminum garnet (Tb:YAG) transparent ceramics with different doping concentrations were fabricated by the solid-state reaction method using commercial Y2O3, α-Al2O3 and Tb4O7 powders as raw materials. Samples sintered at 1750 °C for 20 h were utilized to observe the optical transmittance, microstructure and fluorescence characteristics. It is found that all the Tb: YAG ceramics with different doping concentrations exhibit homogeneous structures with grain size distributions around 22–29 µm. For the 5 at% Tb:YAG transparent ceramics, the grain boundaries are clean with no secondary phases. The photoluminescence spectra show that Tb:YAG ceramics emit predominantly at 544 nm originated from the energy levels transition of 5D47F5 of Tb3+ ions, and the intensity of the emission peak reaches a maximum value when the Tb3+ concentration is 5 at%. The in-line transmittance of the 5 at% Tb:YAG ceramics is 73.4% at the wavelength of 544 nm, which needs to be further enhanced by optimizing the fabrication process. We think that Tb:YAG transparent ceramics may have potential applications in the high-power white LEDs.  相似文献   

10.
The process-structure-property correlationships in yttria-magnesia (YM) composite have been investigated. YM composite was synthesized using commercial powders via ball-milling route with three different grinding balls (Si3N4, Al2O3, ZrO2) having two different sizes (2 and 5 mm diameter). The alteration in grinding ball material and size produces sintered ceramic having different grain sizes (420–560 nm) and degree of phase mixing homogeneity (0.40–0.70). The contamination induced by the milling ball resulted in changes in Y2O3 and MgO defect chemistry, which influenced the grain growth behavior in the YM composite. The hot-pressed composite prepared using 2-mm Si3N4 ball-milled powders exhibited the finest grain size (420 nm) and better phase mixing homogeneity (0.63). The subsequent impact was seen on transmittance efficiency (71%) over the 3–7-μm wavelength range, which is ∼85% of the theoretical limit. The findings show that the selection of the right size and type of grinding ball for milling commercial powder is a simple and cost-effective way for scalable production of YM composite with high transmittance efficiency for infrared windows and dome applications.  相似文献   

11.
《Ceramics International》2023,49(3):4695-4700
(Tb0.8Y0.2-xLax)2O3 transparent ceramics were prepared by using co-precipitation method combined with pressure-less sintering in flowing H2 atmosphere. Microstructure, optical transmittance, elements composition, and Verdet constant of the (Tb0.8Y0.2-xLax)2O3 ceramics were studied. The amount of La2O3 is crucial for the formation of expected transparent (Tb0.8Y0.2)2O3. With increasing content of La2O3, the number of pores and the grain size of as-fabricated (Tb0.8Y0.2-xLax)2O3 ceramics both decrease. When 4 at.% La2O3 is doped, the (Tb0.8Y0.16)2O3 transparent ceramics shows the highest transmittance of 73.3% at 1400 nm wavelength. With holding time increasing from 8 h to 15 h, the average grain size of (Tb0.8Y0.16La0.04)2O3 ceramics gradually increases from 5 μm to 13 μm. The Verdet constant measured at 633 nm is ?352 rad/T·m, which is 2.63 times higher than that of TGG. In addition, large-size ceramics with Φ 20 mm × 3 mm and Φ 30 mm × 3 mm were also successfully obtained.  相似文献   

12.
Y2O3 transparent ceramics were annealed under different atmospheric conditions. The samples annealed in H2 containing atmosphere were colorless and had high in-line transmittances from the near-UV to the mid-infrared wavelength range. This is due to the elimination of carbon contamination and preventing the formation of high concentration oxygen interstitial defects in the sintered samples. Annealing in oxygen containing atmosphere resulted in stronger optical absorption in the visible wavelength region. High temperature annealing in O2 or hot isostatic pressing under high partial pressure of O2 (O2 HIP) led to obviously declining of transparency in a broader wavelength range of 230–800 nm. The Er:Y2O3 ceramics annealed in H2 containing atmosphere had high in-line transmittance of about 80% at 400 nm as well. Room temperature laser oscillation at 2.7 µm was also obtained on the 5%H2/95%Ar atmosphere annealed Er:Y2O3 ceramics.  相似文献   

13.
Highly transparent Yb3+:Y2O3 ceramics with doping concentration up to 40.0 at.% had been fabricated successfully via hydrogen atmosphere sintering, where the raw powders were synthesized by co-precipitation method. The sintering temperature is about 600 °C lower than its melting temperature. SEM investigation revealed the average grain size of Yb3+:Y2O3 ceramics sintered at 1850 °C for 9 h was about 7 μm. The highest transmittance of as-prepared 1 mm thickness samples around wavelength of 1050 nm reached 80%, which is close to the theoretical value of Y2O3. The optical spectroscopic properties of Yb3+:Y2O3 transparent ceramics have also been investigated, which shows that it is a very good laser material for diode laser pumping and short pulse mode-locked laser.  相似文献   

14.
《Ceramics International》2022,48(17):24788-24792
Lu3Al5O12 (LuAG) nanocrystalline powders were synthesized by using ammonium hydroxide (NH4OH, AH) and ammonium hydrogen carbonate (NH4HCO3, AHC) as mixed precipitant. In the absence of sintering aids such as TEOS, MgO or ZrO2, the obtained LuAG powders showed good sinterability in H2 atmosphere (PLSH) at low temperature. The in-line transmittance of LuAG ceramic reached 81% in the whole visible light band from 400 nm to 800 nm. The average grain size of obtained transparent ceramics was ranged in 1–6 μm at different sintering temperatures by PLSH. Various kinds of rare earth ions, such as Nd, Yb, Ce, Pr, and Tm doped RE:LuAG transparent ceramics could be prepared by PLSH technology without sintering aids and HIP post-treatment. Through PLSH technology, RE:LuAG transparent ceramics show high optical quality and large aperture size.  相似文献   

15.
Transparent Y2Ti2O7 ceramics with excess Y content were fabricated by solid state reactive sintering in vacuum using Y2O3 and TiO2 powders as the starting materials. Phase composition, microstructure, density and in-line transmittance of the Y2Ti2O7 ceramics were investigated. The detailed results indicated that as Y content increased, the density and in-line transmittance increased at first and then decreased. And the highest in-line transmittance of Y2Ti2O7 ceramics is 49.9% at 1100?nm when the excess amount of Y to Ti is 2%. The effect of Y content on densification process of Y2Ti2O7 ceramics was discussed based on an assumption that oxygen vacancy defects were the dominated defects.  相似文献   

16.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   

17.
Transparent Y2O3 ceramics were successfully fabricated by spark plasma sintering applying a two-step pressure and heating profile. Through the shrinkage curve of the single-step SPS profile, it was confirmed that shrinkage occurred at 800°C–1250°C, and it was selected as the two-step pressure profile. After the first-step SPS stage at 1250°C, the second-step SPS stage, which had the highest real in-line transmittance, was completed at 1500°C. The two-step SPS profile improved the shrinkage behavior and was able to achieve sufficient densification without excessive coarsening. As a result, the normalized real in-line transmittance to 1 mm was 80.6% at 1100 nm, which is close to the theoretical transmittance of 81.6%. The two-step pressure and heating profile in the SPS process was a significant advantage in manufacturing ceramics that were transparent and had sufficient densification.  相似文献   

18.
New transparent defect pyrochlore KNbTeO6 ceramics were successfully prepared by Spark Plasma Sintering (SPS) of same composition polycrystalline powders elaborated by classic solid-state reaction from oxide precursors (K2CO3, Nb2O5, TeO2) and followed by high energy milling powders. As such precursors are not available as commercial nanopowders, a suitable process has been developed by combining solid-state reactions and high energy milling. The determination of appropriate consolidation conditions and sintering parameters of the green body such prepared, are described in this paper. The resulting ceramic is transparent in both the visible and near infrared range (up to 5.5 μm). The maximum of transmittance is reached in the near infrared region around 2500 nm with a value of 78 % (1 mm thick sample), close to the maximum theoretical value of transmittance. This transparent KNbTeO6 ceramic demonstrates a homogeneous and dense microstructure with an average grain size less than 500 nm. A small content of secondary phase has been detected by nanoscale observations without drastic effects on transparency. This ceramic exhibits very good mechanical properties similar to the Y2O3 transparent ceramic, as well as interesting dielectric properties in the microwave range. This innovative method should drive the development of new transparent materials with technologically relevant applications.  相似文献   

19.
Stable slurries dispersed mixture of commercial Al2O3 and Y2O3 powders, ammonium poly meta acrylate (Dolapix CE64) as the dispersant, and tetraethyl orthosilicate (TEOS) as the sintering aid were prepared by ball milling process. The effects of the milling time on the fabrication of transparent polycrystalline yttrium aluminum garnet (YAG) ceramics were investigated by slip casting and vacuum sintering. The results showed that the best milling time for the deagglomeration of the powder mixture was 16 hours and the slurry prepared during this time showed a near-Newtonian behavior due to the better deagglomeration and lower viscosity. X-ray patterns also showed that all samples were pure YAG phase. The results also revealed that the sample prepared by 16 hours ball milling time suspensions exhibited higher relative green and final density, as well as the maximum transmittance at 1064 nm (≈ 77%). These samples had a more uniform microstructure too.  相似文献   

20.
《Ceramics International》2020,46(9):13669-13676
Infrared (IR) transparent Y2O3–MgO nanocomposites with a volume ratio of 50:50 were synthesized by combining colloidal and spark-plasma-sintering (SPS) techniques. In order to attain well-dispersed and homogeneous starting Y2O3–MgO nanopowder mixture, the effects of the pH value and the amount of polyetherimide (PEI) dispersant on the suspension stability were studied. Rheological measurement reveals that highly-dispersed and stable suspension was obtained at 7 wt% of PEI dispersant under pH = 10.6. The obtained nanopowders with particle size of 20–30 nm were densified using SPS at several sintering temperatures. The sintered composites show fine grains, narrow grain size distribution and uniform microstructure. The nanocomposite sintered at 1250 °C showed the maximum IR transmittance of 84% at a wavelength range of 2.5–6 μm. The Vickers hardness of the nanocomposite was about 11.9 ± 0.3 GPa, which is significantly higher than those of single phase MgO or Y2O3. Successful fabrication of the high-performance Y2O3–MgO nanocomposite indicates that i) the colloidal technique is an effect method to obtain highly dispersed and homogeneous nanopowders and ii) the SPS technique is a powerful tool to fabricate fine-grained dense transparent ceramics, which are suitable for fabricating IR transparent Y2O3–MgO composite ceramics from commercial starting powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号