首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

2.
《Ceramics International》2020,46(3):2743-2757
To meet the needs of corrosion resistance and electrically conductivity for metallic bipolar plates that are employed in proton exchange membrane fuel cells (PEMFCs), a TiSiN nanocomposite coating was fabricated on to a Ti–6Al–4V substrate using reactive sputter-deposition through the double cathode glow discharge plasma technique. The microstructure of the TiSiN coating comprised nanocrystallite TiN grains embedded in an amorphous Si3N4 matrix. Electrochemical measurements were employed to investigate the corrosion behavior of the TiSiN coating in the simulated operating environments of a PEMFC, specifically 0.5 M H2SO4 solution containing different HF concentrations (namely 2, 4 and 6 ppm) at 70 °C pumped with H2 at the anode and air at the cathode. With increasing HF concentration, a higher corrosion current density and lower corrosion potential were observed from both the coating and the uncoated substrate, indicating that the addition of HF accelerated their corrosion rates under these conditions. Compared to the uncoated substrate, the TiSiN coating showed a markedly higher corrosion resistance at all HF concentrations. The passive film that formed on the TiSiN coating, with a resistance of the order of magnitude of ~107 Ω cm2, displayed good electrochemical stability and was less affected by changes in HF concentration. For the TiSiN coating, the values of interfacial contact resistance (ICR) were 14.7 mΩ cm−2 and 18.3 mΩ cm−2, respectively, before and after 2.5 h potentiostatic polarization with 6 ppm HF under cathodic conditions under a compaction pressure of 140 N cm−2. Both values are much lower than those for the bare substrate. Moreover, the TiSiN coating was shown to improve the hydrophobicity of Ti–6Al–4V that would help facilitate water management in the PEMFC operating environment. This coating, which exhibited excellent corrosion resistance, electro-conductivity and hydrophobicity, is therefore a promising material for protecting metallic bipolar plates from corrosive attack.  相似文献   

3.
《Ceramics International》2022,48(18):26342-26350
In this study, bilayer TiAlN/TiSiN and monolayer AlCrSiN ceramic films were grown on carbide cutting tool material by cathodic arc physical vapor coating (CAPVD) method to improve the structural/tribological properties and milling performances. The ceramic films were applied on cylindrical test samples and carbide end mills. The coated materials' structural, mechanical, and tribological properties were determined via scanning electron microscope (SEM), X-ray diffraction meter (XRD), tribometer, microhardness tester, and optical profilometer. DIN 40CrMnNiMo8-6-4 steel workpieces were machined by using a CNC vertical machining center to determine the actual working performance of the coated and uncoated cutting tools. The wear performance of the cutting tools after machining was determined by measuring the flank wear widths and mass losses. The hardness and adhesion results of the coated sample with bilayer TiAlN/TiSiN were higher than the coated sample with monolayer AlCrSiN. According to the scratch test results, the best adhesion results were obtained for TiAlN/TiSiN coating. The critical load value was determined as about 105 N. As a result, the wear rate value of the TiAlN/TiSiN thin film coated sample was lower. After machining, the mass loss of TiAlN/TiSiN coated tools was lower than AlCrSiN coated tools. In addition, the surface roughness value of the workpiece machined by the cutting tool coated with AlCrSiN was higher than the cutting tool coated with TiAlN/TiSiN.  相似文献   

4.
In this study, the wear and friction behavior of cathodic arc physical vapor deposited AlTiSiN+TiSiN coatings on H13 tool steels were investigated by using CrN, TiN and AlCrN interlayers with tribometer tests both under unlubricated and boundary lubricated conditions. 6 mm alumina balls were used as counter surfaces to test ceramic hard coatings. Surface coatings were characterized through nanoindentation, scanning electron microscopy coupled with an energy-dispersive X-ray spectrometer (SEM/EDXS), optical profilometry, and atomic force microscopy (AFM) techniques. The results showed that especially AlTiSiN+TiSiN coating with TiN interlayer resulted in a much more enhanced tribological performance of the tool steels at both unlubricated and the boundary lubricated conditions even at elevated contact pressures.  相似文献   

5.
The purpose of this experimental work is to evaluate the mechanical and tribological properties of chromium aluminum nitride (CrAlN) coating deposited on hypereutectic Al–Si-alloy. The microstructural, topographical analysis, and composition of CrAlN-coated substrates were examined by using scanning electron microscopy and energy-dispersive spectroscopy, whereas phase formation was analyzed by X-ray Diffractometer (XRD). Atomic force microscopy (AFM) images were taken from the substrate surface before and after the coating. The scratch adhesion of film-to-substrate was measured by using scratch machine. In an effort to understand the critical point, loads were identified by Scratch track in terms of load vs. depth as a function of scan distance. Moreover, the critical load as the beginning of chipping or spallation of the coating was studied. The tribological properties of CrAlN coating were evaluated by pin on disc tribometer at room temperature. XRD analysis showed that CrAlN successfully deposited with a preferential orientation along the (1?1?1), (2?0?0) and (2?2?0) peaks. The AFM images of coated sample confirmed that the surface roughness was lower(Ra = 14 nm) as compared to uncoated sample (Ra = 46 nm). The hardness of coated hypereutectic Al–Si-alloy was increased about 5.8 times as compared to uncoated sample. The coefficient of friction and wear rate of coated specimen were found to be improved. The coating adhesion strength of 2341 mN was obtained with coating parameters for deposition of DC power (350 W), RF power (200 W), temperature (175 °C), and nitrogen flow rate (5%).  相似文献   

6.
This study aims to investigate how the predeposition machining processes such as magnetic grinding, turning machining, and wire electrical discharge machining can influence the surface properties including electrochemical and tribological behavior of TiCrN nanostructured coating applied on Mo40 steel substrate. A physical vapor deposition technique using cathodic arc evaporation was used to apply the coating. The crystallographic phases and the microstructure of the coating were studied by X-ray diffraction and scanning electron microscope, respectively. Rockwell-C, electrochemical impedance spectroscopy and potentiodynamic polarization, and pin-on-disk wear tests were employed to evaluate the adhesion strength, corrosion behavior, and tribological property of specimens, respectively. The electrochemical results after 24 h of exposure to 3.5 wt% NaCl solution showed that TiCrN coating pretreated with a turning process with polarization resistance of about 3525.32 Ω.cm2 had the best corrosion resistance among all specimens. This was because of the improvement of the smoothness, surface quality, and adhesion after the turning process. On the other, the friction coefficient of the grounded sample is less than that of other ones. This is probably due to its higher adhesion strength and higher surface smoothness.  相似文献   

7.
《Ceramics International》2021,47(19):27430-27440
Steel materials employed in severe conditions including strong corrosion, high load and multi-factor coupling damages can easily cause incredible degradation until failure, and the protective CrN-based coatings should be one of promising candidates to relieve those damages for the steel equipment or components. In present paper, the monolayer CrAlN and multilayer Cr/CrAlN coatings were successfully deposited on steel substrates by multi-arc ion technology, and their microstructure, mechanical, tribological and corrosion performances were systematically investigated. The results show that the special multilayer Cr/CrAlN coating could possess much better load-bearing capacity and wear resistance than that of monolayer CrAlN coating, which was due to the facts that the multilayer architecture can effectively release the internal stress and inhibit the expansion of defects. Particularly, the multilayer interfaces could effectively prevent the aggressive medium in seawater infiltrating into the inside of coating, and thus the multilayer Cr/CrAlN coating could have higher corrosion resistance compared to monolayer CrAlN coating. As a result, this multilayer Cr/CrAlN coating could achieve excellent combined performances, indicating that it has greatly potential application as protective coating in seawater.  相似文献   

8.
In this work, the Metal-rich phase Chromium Aluminum (CrAl)/Ceramic phase Chromium Aluminum Nitride (CrAlN) multi-layer coatings were prepared by Arc Ion Plating (AIP). The micro-structure and phase composition of CrAl/CrAlN multi-layer coatings were characterized, and the microstructure, mechanical properties, residual stress and fracture toughness of the coating were emphatically analyzed. It has been found out that the residual stress of the multi-layer coating was only ?0.932 ± 0.065 GPa, which was significantly lower than that of the mono-layer coating for ?1.569 ± 0.093 GPa. At the same time, it was also found that the preferred growth orientation of the coating changed from a mono-layer (111) to a multi-layer (200) crystal plane. The hardness of the multi-layer (22.74 ± 0.57 GPa) is slightly lower than that of the mono-layer (24.92 ± 0.5 GPa), and the adhesion strength (46.2 ± 3.8 N) is obviously higher than that of the mono-layer (37.4 ± 2.4 N), and the fracture toughness is also higher (8.7 ± 0.8 MPa m1/2). In addition, the mechanism of crack initiation and propagation in stress-induced coatings was studied in detail on the basis of the structure of micro-nano CrAl/CrAlN multi-layer coatings.  相似文献   

9.
《Ceramics International》2021,47(18):25655-25663
The monolayer VN as well as multilayer VN/C coatings were obtained on 316 L steel via physical vapor deposition (PVD) technology. Structure, mechanical property and tribo-corrosion behavior of monolayer VN and multilayer VN/C coatings under simulated seawater were estimated by corresponding detection equipment. After analysis, C nanolayer could break the grain growth of VN phase, which would enhance the coating toughness and inhibit the source of crack. At the same time, the multilayer structure interface could suppress the dislocation movement. In tribo-corrosion process, the corrosion current density (icorr) of VN/C coating was 2.71 × 10−6 A/cm2, which was 70.47% lower than that of VN coating (9.18 × 10−6 A/cm2), implying that the nano-multilayer structure of VN/C coating showed a strong barrier effect on corrosion medium. Moreover, the C nanolayer not only suppressed the permeation of simulated seawater, but also formed the transfer film to protect the substrate. Thus, the multilayer VN/C coating revealed stronger anti-wear and anti-corrosion abilities than the monolayer VN coating.  相似文献   

10.
《Ceramics International》2018,44(18):22816-22829
In this study, the effect of the amount of tungsten carbide nanoparticles on the wear and corrosion properties of Ni-tungsten carbide nanocomposite coating which is deposited on steel St37 by Tungsten Inert Gas (TIG) welding was evaluated. For this purpose, surface alloying was firstly conducted on St37 steel by using TIG process with a current of 150 Amps using pure nickel powder and tungsten carbide reinforcement nanoparticles (in 5, 10, 15 and 20 wt%). Then, Transmission Electron Microscopy (TEM), optical microscope, Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), microhardness test by Vickers method, abrasion test by sweep method, and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were used in order to characterize the microstructure and tribological properties of the deposited layers. Microstructural observations showed that the deposited Ni-tungsten carbide nanocomposite coating have a dendritic microstructure with a uniform distribution of tungsten carbide nanoparticles, which reduced the dendritic size by increasing the amount of tungsten carbide nanoparticles. The results of this study showed that by increasing the amount of tungsten carbide nanoparticles in the Ni- tungsten carbide nanocomposite coating, the hardness (from the coating surface to the interface of coating/substrate) and wear resistance increased sharply, but the corrosion resistance decreased. Also, the evaluation of the wear mechanism showed that by increasing the amount of tungsten carbide nanoparticles in Ni-tungsten carbide nanocomposite coatings, the wear mechanism in this coating changed from complex abrasive-sheet like to complex adhesive-oxidation.  相似文献   

11.
Nano-structured superhard coatings represent the state-of-the-art in the rapidly increasing worldwide market for protective coatings. In this study, the combination of nano-composite and nano-multilayered structures into the same coating was attempted. Nano-multilayered coatings of TiN/TiSiN and CrN/CrSiN were deposited on tool steel substrates by closed-magnetic-field unbalanced DC magnetron sputter ion plating. The coating structures were characterized using X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Mechanical characterizations were performed including nano-hardness measurement, progressively-increasing-load scratch test, and wear test. TiN/TiSiN coatings have a nano-hardness of 40.2 GPa, whereas CrN/CrSiN coatings have a hardness of 30.9 GPa. TiN/TiSiN coatings also showed a higher critical failure force and scratch fracture toughness as well as better wear resistance and lower acoustic emission signal, indicating less total damage to the coatings.  相似文献   

12.
《Ceramics International》2022,48(24):36570-36584
CrAlN coatings were prepared on Al–Si alloys using filter cathode vacuum arc deposition technique with nitrogen as the reactive gas and Cr25Al75 alloy target as the arc source. The effect of nitrogen pressure on the microstructure, mechanical properties and electrochemical properties of the coatings had been systematically studied. The results showed that the composition, structure and performance of the CrAlN coating depended on the nitrogen pressure. As the nitrogen pressure increased, the Al and Cr content decreased while the N content increased slowly in the coating. Meanwhile, the phase structure gradually changed from AlN phase to CrN phase. The hardness of the CrAlN coating increased significantly with the increase of nitrogen pressure from 0.04 to 0.06 Pa due to the formation of CrN phase and grain refinement. However, further increasing the nitrogen pressure to 0.07 Pa, the hardness was reduced owing to the deterioration of the surface quality caused by target poisoning. Moreover, the adhesion strength of the coating gradually decreases, and the corrosion resistance of the CrAlN coating first increased and then decreased with increasing the nitrogen pressure. The CrAlN coating deposited at a nitrogen pressure of 0.05 Pa had the best corrosion resistance, with the highest polarization resistance, charge transfer resistance and pore resistance, which was related to the combined effect of great compactness and AlN-dominant phase structure in the coating.  相似文献   

13.
In this paper, T-700™ carbon fiber–reinforced silicon carbide (C/SiC) minicomposites with pyrocarbon (PyC) interphase with different textural microstructure and thickness were fabricated using the chemical vapor infiltration method. The interface properties (i.e., textural microstructure, thickness, hardness, and modulus) were obtained through multiple testing methods (i.e., Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and nanoindentation tests). Relationships between the deposition temperature and residence time with the texture type (i.e., low, medium, and high texture) were established. Uniaxial tensile experiments were conducted for C/SiC minicomposites with different PyC interphases to characterize the composite's internal damage evolution and fracture. Relationships between the composite's tensile nonlinear damage evolution, fracture strength and strain, PyC interphase texture, and thickness were established. The composite's tensile strength and fracture strain were the highest for the C/SiC minicomposite with medium-high texture PyC interphase. For the C/SiC minicomposite with the same texture interphase, the composite's tensile strength and fracture strain were affected by the coating thickness. The higher the thickness of the coating, the lower the composite's tensile strength and fracture strain.  相似文献   

14.
This study describes the correlation between microstructure, mechanical and tribological properties of TiCx coatings (with x being in the range of 0–1.4), deposited by reactive magnetron sputtering from a Ti target in Ar/C2H2 mixtures at ~ 200 °C. The mechanical and tribological properties were found to strongly depend on the chemical composition and the microstructure present. Very dense structures and high hardness, combined with low wear rates and friction coefficients, were observed for coatings with chemical composition close to TiC. X-ray diffraction and X-ray photoelectron spectroscopy analysis, used to evaluate coating microstructure, composition and relative phase fraction, showed that low carbon contents in the coatings lead to sub-stoichiometric nanocrystalline TiCx coatings being deposited, whilst higher carbon contents gave rise to dual phase nanocomposite coatings consisting of stoichiometric TiC nanocrystallites and free amorphous carbon. Optimum performance was observed for nanocomposite TiC1.1 coatings, comprised of nanocrystalline nc-TiC (with an average grain size of ~ 15 nm) separated by 2–3 monolayers of an amorphous a-DLC matrix phase.  相似文献   

15.
《Ceramics International》2017,43(12):8999-9004
In this work, CrAlN and TiAlN coatings were produced on silicon nitride cutting inserts via physical vapor deposition. The microstructure and hardness of the coatings, as well as the adhesive strength between the coating and the substrate were studied using a scanning electronic microscope, a micro hardness tester and a scratch tester, respectively. Continuous turning tests of the obtained CrAlN and TiAlN-coated silicon nitride cutting inserts were performed on gray cast iron to evaluate the cutting performances and the machining quality. The results show that the surface hardness of the Si3N4 cutting inserts could be improved by 87% and 50%, respectively, when applying the CrAlN and TiAlN coatings, thereby enhancing the abrasion resistance of the cutting inserts. At different tested cutting speeds, abrasive wear under compressional deformation and adhesive wear were identified as the main failure mechanisms for the two cutting inserts during continuous turning of gray cast iron. The machining quality of the gray cast iron workpieces machined using the uncoated, the CrAlN- or the TiAlN-coated inserts increased with the increment of the cutting speed.  相似文献   

16.
In this study, the Ti-6Al-4V substrate was coated by CrN-CrN/TiN-TiN and CrN/CrAlN multilayer coatings using the cathodic arc physical vapor deposition (Arc-PVD) method. The results of potentiodynamic polarization (PDP) have shown the lowest and highest corrosion current density belong to the double-layer (0.16 µA/Cm2) and TiN (0.51 µA/Cm2) samples, indicating the higher corrosion resistance of the double-layer coating. The field emission electron microscope (FESEM), X-ray diffraction pattern (XRD), open circuit potential (OCP), PDP, and electrochemical impedance spectroscopy (EIS) analysis were employed in order to characterize the coatings and evaluate their corrosion behavior. Finally, applying the double-layer coating resulted in the significant improvement of the protective behavior of the Ti-6Al-4V alloy, as compared to the sample coated with TiN in corrosive environments.  相似文献   

17.
Intrinsic structural limitations of plasma-spray TiO2 coating deteriorate its wear resistance. Herein, CNTs are incorporated in the coating to assess their effects on the microstructure and tribological properties. Structurally, degradation degree of CNTs in TiO2 matrix during plasma spraying was revealed by Raman spectroscopy. And high resolution transmission electron microscopy manifested that TiO2/CNT interface was well bonded along with presence of notable interfacial carbothermic product TinO2n-1 at atomic scale. The phenomenon indicates a beneficial effect for transferring stress from matrix to CNTs effectively. Then, the influence of CNTs on coating’s friction behavior was investigated by zirconia ball-on-disk tribometer under dry-sliding condition. As compared to TiO2 coating, the nanocomposite coating exhibited a moderate decrease in friction coefficient and an enormous reduction (~93.6%) in wear volume. The remarkable advance in tribological properties of the reinforced coating can be attributed to four kinds of frictional effects of CNTs: tribo-reorientation, tribo-protruding, tribo-film and tribo-degradation.  相似文献   

18.
The examination of the existing relationships between nanoindentation responses and tribological properties of the nanostructured CrN, Cr(CN), and (CrTi)N coatings was the matters to be considered in this research. A cathodic arc physical vapor deposition machine was therefore implemented to apply the chosen coatings on the DIN 1.2510 tool steel substrate. Moreover, an X-ray diffraction and a field emission scanning electron microscope were utilized in order to show the features regarding microstructure and morphology of these very coatings. The mechanical and tribological behavior of the coatings was expected to be assessed with the use of a nanoindentation and pin-on-disc wear tests. According to the obtained result, the wear resistance and hardness value of the (CrTi)N coating were proved to be much better than those of the CrN and Cr(CN). Linear equations were proposed between wear rate/hardness and friction coefficient/hardness to evaluate the correlation between mechanical and tribological properties. The presence of a quadratic equation between the friction coefficient and the plastic deformation index was also discovered.  相似文献   

19.
《Ceramics International》2022,48(9):11915-11923
In this study, monolithic AlCrSiN, VN, and nano-multilayered AlCrSiN/VN coatings were deposited using a hybrid deposition system combining arc ion plating and pulsed direct current magnetron sputtering. The microstructure, thermostability, mechanical, oxidation and tribological properties of the coatings were comparably investigated. The multilayered AlCrSiN/VN coating exhibited a face-centered cubic (fcc) structure with (200) preferred orientation and showed the highest hardness (30.7 ± 0.5 GPa) among these three coatings due to the multilayer interface enhancement mechanism and higher compressive stress. The AlCrSiN sublayers effectively prevented the V element from rapid outward diffusion to the surface of AlCrSiN/VN coating at elevated temperatures, which improved the oxidation resistance of the coating. Decomposition of V (Cr)–N bonds occurred at annealing temperatures from 800 °C to 1000 °C and V2N phase appeared at 1100 °C. The AlCrSiN/VN coating showed excellent tribological performance at high temperatures by combining the merits of VN layers for low friction coefficient and AlCrSiN layers for superior oxidation resistance. Compared to VN and AlCrSiN coatings, AlCrSiN/VN coating showed the lowest wear rate of 2.6×10-15 m3/N·m at 600 °C and lowest friction coefficient of 0.26 at 800 °C with a relativity low wear rate of 39.4×10-15 m3/N·m.  相似文献   

20.
《Ceramics International》2017,43(2):1911-1915
Ti(C, N)-based cermets were coated with TiAlN and TiAlN/CrAlN films by physical vapor deposition. The cross-sectional morphology was characterized by scanning electron microscopy (SEM), and the adhesive strength was evaluated by the scratch test. Cutting tests on the coated cermets were conducted on the different cutting conditions. The cutting performance and wear mechanism were analyzed with SEM and EDS. It is found that TiAlN coating has a better adhesion to the cermet substrate. The coated cermet inserts show better wear resistance than the uncoated ones. By contrast, the TiAlN coating suffers a slight abrasive flank wear. However, the TiAlN/CrAlN coating show more severe adhesive flank wear because of the Cr interdiffusion between the inserts and the workpiece. In addition, TiAlN coating is weak in resisting against oxidation wear, while the TiAlN/CrAlN coating has an excellent resistance to oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号