首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Er, Yb:CaF2 nanoparticles with different Yb concentrations were synthesized by a coprecipitation method using nitrates as raw materials. X‐ray powder diffraction and transmission electron microscopy analysis showed that the nanoparticles were single fluorite phase and the nanoparticle size was found to decrease with increasing Yb concentrations. The obtained nanoparticles were hot‐pressed at 800°C under 30 MPa under vacuum environment to fabricate Er, Yb:CaF2 transparent ceramics. The influence of Yb ion concentrations on the optical transmission, microstructure, and luminescence properties of Er, Yb:CaF2 transparent ceramics were investigated. The addition of Yb ions was found effectively to reduce grain size and has a positive effect on improving the optical transmission of Er, Yb:CaF2 transparent ceramics. The highest transmittance in the near‐infrared spectral region of the Er, Yb:CaF2 transparent ceramic reached about 90%. The green, red, and near‐infrared emission intensities were found to increase with increasing Yb concentration.  相似文献   

2.
A novel layered transparent Er:CaF2 composite ceramic was proposed in the present study. Er:CaF2 nanoparticles were synthesized by a chemical coprecipitation method. The crystal structures and morphologies of synthesized nanoparticles were performed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) measurements, respectively. Transparent composite ceramic was fabricated by the combination of multistep dry pressing and hot-pressed sintering method without any sintering aids or binders. The average grain size of 2% Er-doped and 5% Er-doped layers were about 30 and 55 μm, respectively. The thickness of interfacial between two different Er-doped layers was 150-200 μm. For a 1.5 mm thickness transparent Er:CaF2 composite ceramic, the optical transmittance reached 44.9% at 500 nm and 53.6% at 1200 nm. The luminescence spectra and thermal conductivities of transparent ceramic specimens were also discussed.  相似文献   

3.
Nanoparticles of erbium‐doped calcium fluoride were synthesised by the coprecipitation method. Micromorphology of the obtained nanoparticles was observed by transmission electron microscopy. The nanoparticles were hot‐pressed in a vacuum environment to achieve Er:CaF2 transparent ceramic. X‐ray diffraction analysis confirmed the crystallization of a single fluorite phase after sintered. Transmittance spectrum of Er:CaF2 ceramic sample was measured, and the transmittance at 1200 nm reached about 87%. Microstructures were characterized using field‐emission scanning electron microscopy. The luminescence spectrum of Er:CaF2 transparent ceramics under 488‐ and 978‐nm excitation was measured and discussed. It was evidenced that strong cross‐relaxation processes between Er3+ ions occur at high dopant concentration, and favoring the red emission at the expense of the green one.  相似文献   

4.
Nanoparticles of Yb, Er codoped calcium fluoride were obtained by a co-precipitation method. Scanning electron microscope (SEM) and X-ray powder diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grains size around 30–50 nm. Yb, Er:CaF2 transparent ceramics were fabricated by hot pressing (HP) the nanoparticles at a temperature of 800 °C in a vacuum environment. For a 2 mm thickness ceramic sample, the transmittance at 1200 nm reached about 83%. Microstructures were characterized using SEM analysis, and the average grain size was about 700 nm. Grain boundaries of the ceramic sample were clean and no impurities were detected. The absorption, upconversion and infrared emission spectra of transparent ceramic sample under 978 nm excitation were measured and discussed.  相似文献   

5.
x at. % Er3+, 3 at. % Dy3+: CaF2 transparent ceramics (x=1-5) with good transparency were fabricated by hot-pressed sintering. The phase composition of nanoparticles and transparent ceramics, microstructure, in-line transmittance, upconversion spectra and lifetime of transparent ceramics, as well as energy transfer mechanism between Er3+ and Dy3+ were investigated. The mean grain sizes of nanoparticles decreased from 33.0 nm to 26.2 nm with the Er3+ doping concentration increasing from 1 to 5 at.%. The microstructure of ceramic samples presented nearly dense microstructure and EDS analysis indicated Er3+ and Dy3+ were uniformly incorporated into CaF2 lattice. Under 900 nm excitation, the emission intensity for 4F9/26H15/2 transition of Dy3+ decreased and for 4S3/24I15/2 transition of Er3+ increased, the lifetime for the 4F9/2 level of Dy3+ decreased while the 4F7/2 level of Er3+ increased with the raise of Er3+ doping concentration. The energy transfer mechanism was proved to be the dipole-dipole interaction. The upconversion luminescence color was tuned from orange through yellow to green by changing the Er3+/Dy3+ ratio. In addition, the Vickers hardness, fracture toughness, and the thermal conductivity of Er3+, Dy3+: CaF2 transparent ceramics were discussed. All the results showed the Dy3+ could be used as a sensitizer for Er3+: CaF2 transparent ceramic in the upconversion field.  相似文献   

6.
Pr3+, Gd3+ co-doped SrF2 transparent ceramic, as the potential material for visible luminescent applications, was prepared by hot-pressing of precursor nanopowders. The microstructure, phase compositions, and in-line transmittance, as well as the photoluminescence properties were investigated systematically. Highly optical quality Pr,Gd:SrF2 transparent ceramic with nearly pore-free microstructure was obtained at 800°C for 1.5 hours. The average in-line transmittance of the x at.% Pr, 6 at.% Gd:SrF2 (x = 0.2, 0.5, 1.0, 2.0) transparent ceramics reached to 87.3 % in the infrared region. The photoluminescence spectra presented intense visible light emissions under the excitation of 444 nm, the main intrinsic emission bands located at 483 and 605 nm, which were attributed to the transitions of Pr3+: 3P0 → 3H4 and 1D2 → 3H4, respectively. With the co-doping of Gd3+ ions, the emission intensity of the Pr:SrF2 transparent ceramic was greatly enhanced. All the emission bands of x at.% Pr, 6 at.% Gd:SrF2 transparent ceramics exhibited the highest luminescence intensity with the 1.0 at.% Pr3+ doping concentrations, whereas the lifetimes decreased dramatically with the Pr3+ doping contents increasing from 0.2 to 2.0 at.% due to its intense concentration quenching effect. The 1 at.% Pr, 6 at.% Gd:SrF2 transparent ceramic is a promising material for visible luminescent device applications.  相似文献   

7.
Raw SrF2 powders were synthesized by the chemical precipitation method, and the mean particle size was 58.48 nm. Er:SrF2 transparent ceramics were obtained by hot-pressed (HP) technique, and the effect of ErF3 levels on the transparency, microstructure, luminescence spectroscopic and microhardness were studied. The ratio of emission intensities R (Red/Green) increased with the ErF3 doping levels. The addition of ErF3 was found effectively to reduce grain size and has a positive effect on improving the microhardness. The SrF2 ceramic doped with 5 wt.% ErF3 (2 mm thick) showed the best optical transparency, the transmittance at 500 nm and 1200 nm are 87.9 % and 89.5 %, respectively. The average grain size, Vickers hardness (Hv), and fracture toughness (KIC) for the SrF2 ceramic were 21.1 ± 4.5 μm, 1.73 ± 0.04 GPa, and 0.52 ± 0.08 MPa·m1/2, respectively.  相似文献   

8.
《Ceramics International》2017,43(16):13127-13132
In this study, we report highly transparent Er:Y2O3 ceramics (0–10 at% Er) fabricated by a vacuum sintering method using compound sintering additives of ZrO2 and La2O3. The transmittance, microstructure, thermal conductivity and mechanical properties of the Er:Y2O3 ceramics were evaluated. The in-line transmittance of all of the Er:Y2O3 ceramics (1.2 mm thick) exceeds 83% at 1100 nm and 81% at 600 nm. With an increase in the Er doping concentration from 0 to 10 at%, the average grain size, microhardness and fracture toughness remain nearly unchanged, while the thermal conductivity decreases slightly from 5.55 to 4.89 W/m K. A nearly homogeneous doping level of the laser activator Er up to 10 at% in macro-and nanoscale was measured along the radial direction from the center to the edge of a disk specimen, which is the prominent advantage of polycrystalline over single-crystal materials. Based on the finding of excellent optical and mechanical properties, the compound sintering additives of ZrO2 and La2O3 are demonstrated to be effective for the fabrication of transparent Y2O3 ceramics. These results may provide a guideline for the application of transparent Er:Y2O3 laser ceramics.  相似文献   

9.
Nd3+ doped SrF2 and CaF2 transparent ceramics were fabricated by vacuum hot-press sintering and the absorption spectra, emission spectra as well as luminescence decays of the samples were measured. Judd-Ofelt (J–O) theory was used to analyze the optical performance of Nd3+ in these two isostructural hosts. The Nd: SrF2 transparent ceramic was found to have smaller line strength, larger radiative lifetime and smaller Ω2 value (corresponding to more ionic Nd3+-ligand bonding and more symmetry of Nd3+ environment). These features made it easier for Nd: SrF2 to realize population inversion and strong emission, thus doing good to laser performance. The strong emission of 4F3/24I9/2 transition in Nd: SrF2, which was predicted by J–O theory and demonstrated by luminescence spectrum, made it possible to achieve effective laser output around 900 nm. The intensity parameters and radiative lifetimes of ceramics were found comparable with their corresponding single crystals.  相似文献   

10.
A novel transparent SrF2/Nd:SrF2/SrF2 composite ceramic with sandwich-like laminar configuration was designed and successfully fabricated by the hot-pressed sintering method. The composite ceramic possesses an apparent transition interfacial (about 200 μm in thickness) between SrF2 and Nd:SrF2 layers, formed by non-uniform distribution of raw powders and the diffusion of Nd ions during the high temperature sintering. The average grain sizes of SrF2 and Nd:SrF2 layers are about 262.1 μm and 28.6 μm, respectively. For a 2-mm thick transparent SrF2/Nd:SrF2/SrF2 composite ceramic hot-pressed at 900 °C for 2 h, the transmittance at 500 nm and 1200 nm are about 49.6 % and 62.3 %, respectively. The microstructure, emission spectra and thermal conductivities of ceramics are also detected and studied.  相似文献   

11.
High optical quality Nd3+ and Ce3+ co-doped SrF2 (Nd3+, Ce3+: SrF2) transparent ceramics were fabricated successfully by a simple hot-pressing (HP) method. The phase composition, in-line transmittance, absorption and emission spectra, as well as the detailed energy transfer of Nd3+ and Ce3+ were investigated. In addition, the Judd- Ofelt (J-O) theory was adopted to evaluate the luminescence property. The SrF2 transparent ceramic samples exhibited excellent optical properties, up to 82 % at 400 nm and 92.5 % at 1054 nm. The fracture surface of SrF2 transparent ceramic proved nearly dense microstructure and EDS results demonstrated uniform doping. The addition of cerium ions changed the crystal field environment of neodymium ions and shifted the emission peak to higher wavelengths at 796 nm excitation. Moreover, through the energy transfer process of Ce3+ to Nd3+, the occurrence of concentration quenching phenomenon was avoided under 298 nm excitation, and the emission cross-section of 4F3/24I11/2 increased to 3.1 × 10−20 cm2.  相似文献   

12.
Er3+-doped transparent perfluoride composite glass (PFCG) containing SrF2 crystals was obtained by a one-step method. PFCG was observed to maintain the formation of a single SrF2 crystal phase even when the Er3+ doping concentration was as high as 8 mol%. Importantly, Er3+ was enriched in the crystalline region, which promoted grain growth. This ensures effective emission of upconversion (UC). Interestingly, green and red UC emissions were found to be tunable in the range of 1–6 mol% Er3+ doping, and the UC emission and lifetime started to produce concentration quenching until 6 mol% Er3+ doping. To the best of our knowledge, this is the highest quenching concentration of Er3+ in composite-glass materials. Moreover, the dominant UC process was systematically analyzed at different doping levels. This research is expected to provide ideal candidate materials and appropriate Er3+ concentration doping level guidance in PFCG for the field of UC lasers.  相似文献   

13.
Laser grade 7 at.% Er:Y2O3 transparent ceramics with submicron grain size were fabricated by using one-step vacuum sintering followed by hot isostatic pressing (HIPing) technique. Through studying the sintering trajectory of Er:Y2O3 ceramics, the sintering temperature zone where sufficient relative density (>96%), no pore-boundary separation, and sub-micron grain size (<1 μm) ceramic samples could be identified. The samples pre-sintered in this zone were readily densified by HIPing. To maximum the densification and achieve high transparency, it is critical to suppress the final-stage grain growth. After HIPing at 1520 °C, the Er:Y2O3 ceramics were fully densified without further grain growth, and exhibited in-line transmission of about 81.6% at 2000 nm. Continuous wave (CW) room temperature laser operation of the Er:Y2O3 transparent ceramic at 2.7 μm was demonstrated.  相似文献   

14.
《Ceramics International》2016,42(11):13285-13290
1 at% Nd, 3 at% Y doped CaF2 transparent ceramics were obtained by hot pressing at the sintering temperature varing from 500 to 800 °C under vacuum environment with co-precipitated CaF2 nanopowders. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grain size around 26 nm. Scanning electron microscopy (SEM) observations of the Nd, Y: CaF2 ceramics indicated that the mean grain size of the ceramic sintered at 800 °C was about 748 nm. The influence of the temperature on the grain size, microstructure and optical transmittance was investigated. For the ceramic sintered at 800 °C, the transmittance was 85.49% at the wavelength of 1200 nm. The room temperature emission spectra of Nd: CaF2 and Nd, Y: CaF2 ceramics were measured and discussed.  相似文献   

15.
A large and reversible upconversion (UC) luminescence modulation has been found in the Na0.498Bi0.498TiO3:0.002Er (NBT:0.002Er) based on the photochromic reaction. The dependence of luminescence modulation of the ceramics on the wavelength of irradiation light and sintering temperature was investigated. It was found that the optimized sintering temperature and irradiation wavelength were 1130°C and 405 nm, respectively. The highest ΔRt (defined as: ΔRt = (R0 – Rt)/R0×100(%), where R0 and Rt are the initial emission intensity and that after different irradiation time, respectively) value of 44.9% was obtained for the ceramics sintered at 1130°C after irradiation at 405 nm. More importantly, for the poled ceramics, ΔRt value was promoted to a high value of 75.5%, which was 168% of that of the unpoled ones. The mechanism of luminescence modulation and its enhancement via electric field poling were discussed. This study demonstrated that electric field poling was an effective strategy to enhance the PC reaction in the NBT ceramics.  相似文献   

16.
The transparent polycrystalline erbium and ytterbium co-doped yttrium aluminum garnet (Er,Yb:YAG) ceramics with various Yb contents from 5% to 25% were prepared by the solid-state reaction and the vacuum-sintering technique. The in-line transmittances of the mirror-polished ceramics exceed 80% from the visible band to the infrared band. The samples are very compact with few pores. The average grain size of the Er,Yb:YAG ceramic is about 15 μm. The upconversion luminescence spectra, infrared luminescence spectra and luminescence decay curves of the ceramics were observed and discussed. For 1%Er doped YAG ceramic, the best ion ratio of Yb3+ and Er3+ is around 15:1.  相似文献   

17.
The asymmetric hexagonal Sr5(PO4)3F (S-FAP) crystal material is considered to be the most suitable solid state laser gain medium for small laser diode pumping in the future due to its large absorption, emission interface, and long fluorescence lifetime. However, the mediocre optical transmittance of S-FAP transparent ceramics and the degradation of luminescence properties due to the doping of Yb activated ions seriously hinder its application prospects. In view of this, a series of 0.02Yb, xLu: S-FAP (x = 0–0.02) transparent ceramics with excellent optical properties were synthesized by hot pressing sintering. The powder SEM results show that Lu doping has no obvious effect on the morphology, grain size, and dispersion of powder. The linear transmissivity curves show that the ultraviolet (200 nm) and visible (500 nm) transmissivity increase by 54 % and 17 %, respectively, with Lu doping compared with the undoped ceramic samples. The surface SEM of ceramics revealed that Lu3+ promoted the increase of ceramic grain size significantly. The emission spectrum and fluorescence decay curves at room temperature also show that the emission intensity and fluorescence lifetime of ceramic samples increase significantly with Lu co-doping.  相似文献   

18.
3 at.% Er3+, x at.% Ho3+: SrF2 (x = 0, 0.05, 0.1, 0.5, 1, 2) transparent ceramics, as the potential material for the 2.7 μm solid-state laser, were fabricated by hot-pressed sintering. XRD, TEM, SEM, and EDS measurements were used to investigate the phase composition, morphology, microstructure, and distribution of the elements of the nanoparticles and transparent ceramics. Results showed that the Er3+ ions and Ho3+ ions do not alter the SrF2 crystal structure, and they are distributed uniformly in the sample. With the increase of the Ho3+ doping concentration, the lattice parameter decreased from 5.799 Å to 5.784 Å, and the average grain size decreased gradually. The maximum transmittance of as-obtained ceramics is approximately 93 % which is close to the theoretical transmittance of SrF2. Moreover, the absorption spectra, emission spectra, and the lifetime of Er3+ and Ho3+ were investigated. The energy transfer processes between Er3+ and Ho3+ were discussed. After co-doping Ho3+, the lifetime difference between Er3+:4I11/2 and Er3+:4I13/2 levels was shortened from 8.50 ms to 1.12 ms. All the results show that the incorporation of Ho3+ with proper doping concentration is beneficial for achieving 2.7 μm laser output in Er3+: SrF2 transparent ceramics.  相似文献   

19.
0.2–5.0?at% Pr3+-doped CaF2 transparent ceramics were fabricated by hot-pressed processing for the first time. The phase compositions, microstructure and optical characteristics of the presented transparent ceramics were examined systematically. The average in-line transmittance of Pr:CaF2 transparent ceramics (2.0?mm thick) with high Pr3+ doping concentrations (1.0–5.0?at%) exceeds 86% at the wavelength of 1200?nm. The absorption spectrum manifests that the prepared Pr:CaF2 transparent ceramics contain some absorption peaks overlapped with emission bands of the commercial InGaN laser diodes. Further, a detailed investigation on the visible emission properties as a function of Pr3+ concentrations in CaF2 transparent ceramics was reported. The emission spectra presented two main characteristic peaks at 496?nm (bluish green) and 656?nm (red) corresponded to the transitions of 3P03H4 and 3P03F2 for Pr3+ activator ions. With the increase of the Pr3+ doping concentrations, the emission intensity and decay lifetimes decreased generally attributed to the concentration quenching effect. Details on energy transfer mechanism of Pr3+ in CaF2 transparent ceramics were demonstrated and discussed.  相似文献   

20.
The various high content Er-doped YAG transparent ceramics with excellent transparency up to nearly 84% at the visible band and the near-infrared band were prepared by the solid-state reaction and the vacuum sintering technique. It is found that the samples exhibit pore-free structures and there are no secondary phases both at the grain boundaries and the inner grains. The average grain size of the Er:YAG ceramics is about 30 μm. The green and red upconversion luminescences in the Er:YAG ceramics pumped by a 980 nm LD were observed. The different upconversion mechanisms depending on Er content in the Er:YAG ceramics and the LD power were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号