首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gallium oxide (β‐Ga2O3) is an interesting semiconductor that has a wide bandgap and can be used as an optoelectronic material in flat‐panel displays, solar energy conversion devices and optical limiters for UV light. However, it is difficult to fabricate and process Ga2O3 nanofibers for actual optoelectronic applications. When the excellent processability of polymeric materials is introduced into the inorganic nanofiber fabrication process, this limitation can be easily overcome. The aim of the research reported was to prepare granular Ga2O3 nanofibers utilizing an electrospun polyacrylonitrile nanofiber template combined with sol‐gel technology. Ga2O3 nanofibers were successfully fabricated by electrospinning a solution of polyacrylonitrile mixed with gallium nitrate and subsequent calcination. The surface and bulk morphologies of the calcined nanofibers investigated using field‐emission scanning electron microscopy and transmission electron microscopy (TEM) indicated that Ga2O3 nanofibers were constructed by the fusion of gallium oxide nanoparticles. TEM bright‐field images combined with selected‐area electron diffraction indicated that the average diameter of the Ga2O3 nanofibers produced was ca 55 nm and the crystalline structure was β‐Ga2O3 with a monoclinic unit cell. Furthermore, the photoluminescence spectrum of the Ga2O3 nanofibers exhibited two strong green emission peaks and one UV emission peak. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The effects of the addition of a metal ion in a Ni supported Ga2O3 photocatalyst on the photocatalytic overall splitting of H2O were investigated. The addition of Ca, Cr, Zn, Sr, Ba and Ta ions were effective in improving the photocatalytic activity. Particularly, the addition of the Zn ion improved the photocatalytic activity remarkably. The states of the photocatalyst after the addition of Zn ion are discussed.  相似文献   

3.
Color-tunable up-conversion powder phosphors Zn(AlxGa1-x)2O4: Yb3+,Tm3+,Er3+ were synthesized via high temperature solid-state reaction. Also, the morphological and structural characterization, up-conversion luminescent properties were all investigated in this paper. In brief, under the excitation of a 980?nm laser, all powders have same emission peaks containing blue emission at 477?nm (attributed to 1G43H6 transition of Tm3+ ions), green emission at 526?nm and 549?nm (attributed to 2H11/24I15/2 and 4S3/24I15/2 transition of Er3+ ions respectively), red emission at about 659?nm and 694?nm (attributed to 4F9/24I15/2 transition of Er3+ ions and 3F33H6 transition of Tm3+ ions, respectively), which are not changed after the doping of Al3+ ions. However, the doping of Al3+ ions can enhance the up-conversion luminescent intensity and efficiency, while the emission color of as-prepared powder phosphors can be tunable by controlling the doping amount of Al3+ ions. Taking Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er as the cut-off value, the emissions have clear blue-shift firstly and then show obvious red-shift with the increasing doping of Al3+ ions. Stated thus, pink emission in ZnAl2O4:Yb,Tm,Er, purplish pink emission in ZnGa2O4:Yb,Tm,Er and Zn(Al0.9Ga0.1)2O4:Yb,Tm,Er, purple emission in Zn(Al0.1Ga0.9)2O4:Yb,Tm,Er and Zn(Al0.3Ga0.7)2O4:Yb,Tm,Er, purplish blue emission in Zn(Al0.7Ga0.3)2O4:Yb,Tm,Er, blue emission in Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er can be observed, which confirm the potential applications of as-prepared Zn(AlxGa1-x)2O4:Yb3+,Tm3+,Er3+ powder phosphors in luminous paint, infrared detection and so on.  相似文献   

4.
《Ceramics International》2022,48(6):7605-7612
In recent work, pure α-Fe2O3 (F-1) and series of 5% Cu doped Fe2O3 (CF-5) , 10% Cu doped Fe2O3 (CF-10) and 15% Cu doped Fe2O3 (CF-15) nanoparticles by facile chemical coprecipitation method were synthesized to study the effect of concentration of doping for photocatalytic activity. As prepared F-1, CF-5, CF-10, CF-15 nanoparticles were subjected to X-ray diffraction (XRD) and Fourier transform infra-red (FTIR) techniques to analyse the structural and functional groups features. These characterization techniques confirmed the successful doping of Cu 2+ ions in α-Fe2O3. The crystallite size of synthesized samples was calculated by Scherrer formula. Gradually decline in crystallite size from 18 to 15 nm was observed for undoped to doped samples. Scanning electron microscopic (SEM) analysis expressed that doping of Cu reduced the aggregation of particles and enhanced the surface area of nanoparticles. UV–Visible spectroscopic analysis of synthesized samples was used to calculate the bandgap energy of F-1, CF-5, CF-10, CF-15 nanoparticles i.e., 2.0, 1.7, 1.5, 1.4eV respectively. Narrowing bandgap energy of doped hematite supported to perform excellent photocatalytic activity. Maximum degradation of methylene blue was recorded via CF-10 within 140 min. Higher degradation rate of methylene blue by optimal concentration of CF-10 is due to effective electron trapping ability of photocatalyst.  相似文献   

5.
The kinetics of propane dehydrogenation over single-Pt-atom-doped Ga2O3 catalyst has been examined by combining density functional theory calculations and microkinetic analysis. The doping of Pt not only can improve the selectivity of the Ga2O3 catalyst by hindering the deep dehydrogenation reactions but also helps to achieve a long-term stability by improving the resistance of Ga2O3 to hydrogen reduction. Microkinetic analysis indicates that upon Pt doping the turnover frequency for propane consumption is increased by a factor of 2.8 under typical operating conditions, as compared to the data on the pristine Ga2O3 surface. The calculated results suggest that the Pt1–Ga2O3 catalyst shows a bifunctional character in this reaction where the Pt–O site brings about dehydrogenation while the Ga–O site is active for desorbing H2, which provides a beautiful explanation for the previous experimental observation that even trace amounts of Pt can dramatically improve the catalytic performance of Ga2O3.  相似文献   

6.

Molybdenum trioxide (MoO3) micro-belts were successfully synthesized via the sol–gel coprecipitation method. The synthesized material was, then, doped with different concentrations of yttrium element, Y. The influence of the doping concertation on crystallographic, microstructural, optical, and photocatalytic properties has been studied. Good thermal stability has been revealed by thermogravimetric analysis. The X-ray diffraction analysis identified the orthorhombic phase. The peaks were shifted toward the lower 2θ angle position after doping, confirming the Y3+ substitution in the MoO3 crystal structure. Scanning electron microscope measurements revealed a belt-like shape with a decreasing size when increasing the Y3+ ions concentration. SEM clearly showed a non-homogeneous distribution of second-phase particles, depending on the concentration of yttrium doping, which could be attributed to the Y2Mo4O15 secondary phase. The band-gap energy was shifted to the lower-energies of an amount of 0.61 eV when going from 0 to 10% of yttrium. The photocatalytic performances were monitored through photodegradation of methylene blue under different radiations. It was observed that Y-dopant significantly improved the photocatalytic activity of MoO3, the longer the wavelength the better the removal efficiency. This enhancement could be associated with the doping-induced modification of the band-gap or to the microstructure evolution.

  相似文献   

7.
《Ceramics International》2015,41(6):7478-7488
Gas sensing characteristics of one-electrode sensors based on the In2O3 ceramics doped by gallium and phosphorus have been discussed. In2O3-based ceramic was prepared by sol–gel technology. Ozone, CO, CH4 and H2 were used as tested gases. The doping concentration effect on the sensor parameters such as magnitude of response, operating temperature, response and recovery times, sensitivity to the air humidity, and selectivity have been analyzed. It was shown that In2O3 doping by Ga and P could be used for the sensor performance optimization. It was assumed that the appearance of the second phase (InPO4 and Ga2O3) and the change of structural parameters, taking place during doping process, were the main factors controlling the change of operating characteristics in In2O3:P and In2O3:Ga-based sensors.  相似文献   

8.
《Ceramics International》2022,48(3):3185-3191
In this work, we propose an effective way to improve the endurance performance of Ga2O3 resistive random access memories by doping ZnO. Excellent bipolar resistive switching behaviors have been observed in atomic-layer-deposited ZnO-doped Ga2O3 RRAMs, which exhibit large memory windows over 103 and retention time up to 104. Bipolar resistive switching behaviors can be explained by the formation or rupture of conductive filaments composed of Ag atoms and oxygen vacancies. Current – voltage curves suggest Ohmic conductance of the low resistance states, while the conductive mechanism of the high resistance states corresponds to the trap-assisted space charge limited conduction. Furthermore, the reason why the endurance performance of ZnO-doped Ga2O3 RRAMs is better than pure Ga2O3 RRAMs is analyzed.  相似文献   

9.
《Ceramics International》2021,47(20):28455-28459
Lead-free 0.69BiFe1-xGaxO3-0.31BaTiO3 (x, 0–0.06) piezoceramics were synthesized via traditional sintering techniques. The phase structure, dielectric, piezoelectric and ferroelectric performances of the ceramics were studied systematically. The results revealed that all the samples locate near MPB of rhombohedral (R)-pseudocubic (pC) phase coexistence, and that Ga doping has distinct influences on the R/pC phase content ratio. An appropriate content of Ga doping favors densification and grains growth of the ceramics during sintering. With the increment of Ga content, the Curie temperature of the samples shifts towards lower temperature owing to increased tolerance factor t of the perovskites, and enhanced diffuse phase transition behavior was observed. In addition, both the piezoelectric and ferroelectric property are sensitive to the concentration of Ga doping. Significantly, the excellent piezoelectric coefficient d33 up to 206 pC/N along with strong remanent polarization Pr of 25 μC/cm2 are obtained in 0.69BiFe0.985Ga0.015O3-0.31BaTiO3 materials which would be a promising substitute for the conventional lead zirconate titanate system ceramics.  相似文献   

10.
《Ceramics International》2020,46(11):19038-19045
Waelz slag, which is a Fe-bearing hazardous waste, was applied as the raw material in the synthesis of M-Fe3O4@Fe2O3 (M = Al, Zn, Cu, and Mn) nanoparticles, which are potential photocatalysts. Through acidolysis, 97.23% of Fe and most of the valuable metals were extracted from this slag. Using sol-gel processes, designed Fe3O4@Fe2O3 nanoparticles doped with multiple elements were systematically synthesised and characterised using X-ray diffraction, field emission scanning electron microscopy, electron diffraction spectroscopy, transmission electron microscopy, and Brunauer–Emmett–Teller analysis. The photocatalytic activities of the synthesised particles and undoped Fe2O3 nanoparticles were compared through photocatalytic methyl orange degradation experiments under UV and simulated solar light. The results indicated that all of the slag-derived nanoparticles gave improved photocatalytic performances compared to the undoped sample, and the M-Fe3O4@Fe2O3 (M = Al, Zn, and Cu) sample exhibited the best photocatalytic activity. The enhancement can be attributed to grain refinement, doping, and the formation of a typical Fe3O4@Fe2O3 core-shell structure.  相似文献   

11.
Catalytic performance of a series of Ga2O3–Al2O3 mixed oxides prepared by alcoholic-coprecipitation method for the dehydrogenation of propane in the presence of CO2 was investigated. It is shown that the combination of Ga and Al oxides greatly improved the performance of the Ga2O3-based materials for catalytic dehydrogenation of propane, with the highest performance attainable at a Ga2O3–Al2O3 catalyst with a 20 mol% aluminum content. While the same tendency was observed for the specific activity normalized by BET surface area, significantly enhanced stability was achieved for Ga2O3–Al2O3 with higher aluminum content. X-ray diffraction (XRD) revealed that a homogeneous spinel-type Ga2O3–Al2O3 solid solution is uniformly formed by substitution of Ga3+ for Al3+ in the Al2O3 lattice. The enhanced activity of Ga2O3–Al2O3 mixed oxides was accounted for by the abundance of surface weak acid sites due to the synergetic interaction between Ga2O3 and Al2O3 in the solid solution systems.  相似文献   

12.
The impacts of oxygen vacancies on the photocatalytic performance of In2O3 particles were never investigated previously. In this paper, cubic shape In2O3 particles were synthesized by hydrothermal method, and different concentrations of oxygen vacancies were generated in In2O3 particles by controlling the H2 gas flow rate in hydrogen plasma reduction. The SEM images confirmed that the hydrogen plasma reduction did not change the particle morphology. The existence of oxygen vacancies was determined by electron paramagnetic resonance spectrum. Finally, the photocatalytic performance of In2O3 particles with different concentration of oxygen vacancies was investigated by the degradation of Methylene Blue (MB) solution under visible light irradiation. It was observed that when the hydrogen flow rate is 2?mL/min, the sample showed the highest photocatalytic performance, a further increased flow rate resulted in a decreased photocatalytic performance, which could be attributed to the over reduction of In2O3.  相似文献   

13.
《Ceramics International》2022,48(17):24213-24233
In recent years, gas sensors fabricated from gallium oxide (Ga2O3) materials have aroused intense research interest due to the superior material properties of large dielectric constant, good thermal and chemical stability, excellent electrical properties, and good gas sensing. Over the past decades, Ga2O3-based gas sensors experienced rapid development. The long-term stable Ga2O3-based gas sensors for detecting oxygen and carbon monoxide have been commercialized and renowned with extremely good gas sensing characteristics. Recent pioneering studies also exhibit that the Ga2O3-based gas sensors possess great potentials in applications of detecting nitrogen oxides, hydrogen, volatile organic compounds and ammonia gases. This article presents recent advances in gas sensing mechanism, device performance parameters, influence factors, and applications of Ga2O3-based gas sensors. The impacts of influence factors, doping, material structure and device structure on the performance of gas sensors are discussed in detail. Finally, a brief overview of challenges and opportunities for the Ga2O3-based gas sensors is presented.  相似文献   

14.
《Ceramics International》2022,48(3):3481-3488
Ga2O3 films were deposited on Si substrates through radio-frequency magnetron sputtering at room temperature and were annealed in situ in a high-vacuum environment. The as-deposited Ga2O3 film exhibited an island-like surface morphology and had an amorphous microstructure, with a few nanocrystalline grains embedded in it. After high-temperature in situ annealing, the films recrystallized and exhibited coalesced surfaces. Because of the thermally driven diffusion of Ga, the interfacial layer between Si and Ga2O3 was composed of SiGaOx. Compared with ex situ annealing in air, in situ annealing in high vacuum is more advantageous because it enhances surface mobility and improves the crystallinity of the Ga2O3 films. The higher oxygen vacancy concentration of in situ annealed films revealed that oxygen atoms were easily released from the Ga2O3 lattice during high-vacuum annealing. Photoluminescence (PL) spectra exhibited four emission peaks centered in ultraviolet, blue, and green regions, and the peak intensities were significantly enhanced by thermal annealing at >600 °C. This work elucidates the effect of the in situ annealing treatment on the recrystallization behavior, interfacial microstructure, oxygen vacancy concentration, and PL performance of the Ga2O3 films, making it significant and instructional for the further development of Ga2O3-based devices.  相似文献   

15.
《Ceramics International》2016,42(8):10021-10029
The tailored doping levels towards the band gap tunability are one of the challenges to push forward the potential application of one-dimensional (1D) ZnO nanostructures in the opto/electric nanodevices. In present work, we reported the exploration of Mg-doped ZnO nanofibers via electrospinning of polyvinylpyrrolidone (PVP), Zn(CH3COO)2 (ZnAc) and Mg(CH3COO)2 (MgAc), followed by calcination in air. The resultant products were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM), and X-ray photoelectron spectroscopy (XPS). The optical measurements (UV–vis) of the Mg-doped ZnO nanofibers suggested that the optical band gaps of the ZnO nanofibers could be tuned from 3.33 to 3.40 eV as a function of the Mg doing levels. This tunability of the band gap of ZnO nanofibers with an intentional impurity could eventually be useful for optoelectronic applications.  相似文献   

16.
《Ceramics International》2016,42(10):11827-11837
Ternary magnetic Fe3O4 nanowire@CeO2/Ag nanocomposites have been firstly synthesized by means of hydrothermal and co–precipitation techniques, and their ability to adsorb, photocatalytic degradation organic pollutants, methylene blue present in water, and separate, has been demonstrated. The results show that CeO2 and Ag nanoparticles are uniformly deposited on the surface of Fe3O4 nanowires. The photocatalytic experiments demonstrate that the Fe3O4@CeO2/Ag nanocomposites exhibit remarkably enhanced photocatalytic properties and stability compared to CeO2, CeO2/Ag, Fe3O4@CeO2, Fe3O4 under natural sunlight exposure. Moreover, excellent photocatalytic degradation efficiency for phenol and MO are also observed. The enhanced photocatalytic performance may be attributed to the synergetic effect of Fe3O4 nanowire, CeO2 and Ag nanoparticles, which lead to the enhanced light harvesting, the promoted charge separation and enhanced adsorption capacity. In addition, the Fe3O4@CeO2/Ag photocatalyst can be easily collected and separated by an external magnet. These results suggest that the nanocomposites could be exploited as potential candidates for solar photocatalysis.  相似文献   

17.
In this work, we fabricated a novel spinel-type phosphor material MgAl2−xGaxO4 doped with Cr3+ by the high-temperature solid-state sintering method. The crystal field environment of the spinel was tuned by replacing the Al ions with Ga3+ ions of different concentrations. The cell volume and Dq/B gradient increase from 2.82 to 2.62 with increasing Ga3+ ion doping concentration. This also implies a gradual decrease in the field strength of the crystal. Based on this, the excitation spectra of MgAl1.995−xGaxO4:0.5%Cr3+ phosphors yield a redshift. Increasing the Ga3+ ion doping concentration also improves the emission intensity and thermal stability of the phosphors, and the emission intensity of the Ga3+-doped phosphors is significantly increased. For a Ga/Al ratio of 1, the thermal stability of the phosphor emission is optimal. The emission intensity at 140°C can maintain 76% of the emission intensity at room temperature, indicating that appropriate Ga3+ ion doping can improve the emission efficiency and thermal stability of the phosphors.  相似文献   

18.
《Ceramics International》2019,45(11):14404-14410
Ordered-and-oriented TiO2 nanofibers and nanotubes were prepared by magnetic field-assisted electrospinning, and photocatalytic properties of all samples were analyzed under UV–Vis shine. TiO2 nanofibers/nanotubes prepared by magnetic field-assisted electrospinning showed better degradation effect on rhodamine B, reduced the band gap, increased the contact area of organic pollutants with the sample and higher photocatalytic activity than TiO2 nanofibers/nanotubes prepared by classical electrospinning. The product obtained after high temperature annealing was a mixed phase of rutile phase and anatase phase and could be advantageous to the segregate of photogenic electron hole pairs and enhance the high dye absorption capacity; Surface roughness could increase more active sites and accelerate the reaction rate of photocatalytic activity; the addition of magnetic field regulated the morphology of TiO2, and narrowed the band gap to favor photocatalytic performance. The magnetic field-assisted electrospinning study prepared in this paper was an easy-to-use and versatile method for the preparation of ordered TiO2 nanomaterials, which could be easily extended to practical applications or other materials for photocatalysis and water cleavage.  相似文献   

19.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

20.
The intermediate temperature electrolytes La1?xSrxGa1?yMgyO3?δ (LSGM, where δ = (x + y)/2) with perovskite structure were prepared using a poly(vinyl alcohol) (PVA) solution polymerization method. Three secondary phases were identified by X-ray diffraction, LaSrGaO4, LaSrGa3O7 and La4Ga2O9. The relative amount of these secondary phases depended on the doping compositions. Sr doping produced more Sr rich secondary phases with increasing content, while enhanced solid solubility was observed with Mg addition. Sintered samples showed dense microstructures with well-developed equiaxed grains, and the secondary phases were mainly in the grain boundaries. LaSrGaO4 could not be detected by SEM for the sintered pellets. The oxygen ionic conductivity was enhanced by doping with Sr and Mg. Mg doping showed the increased conductivity activation energy. La0.8Sr0.2Ga0.9Mg0.1O2.85 had the highest ionic conductivity σ = 0.128 S/cm at 800 °C in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号