首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immersion corrosion tests of TiC0.8, TiC, TiC–20 vol% SiC, TiC–40 vol% SiC and SiC have been performed in molten FLiNaK salt at 800 °C for 25–200 h under argon cover gas. All of these five samples showed small mass loss and relatively good corrosion resistance in molten FLiNaK salt. The corrosion patterns of TiC0.8, TiC, TiC–20 vol% SiC and TiC–40 vol% SiC were inter-granular corrosion, which were attributed to the depletion of Ti along the grain boundaries. SiC exhibited a general corrosion process in which a carbon-rich layer formed on the surface, resulting from the depletion of Si. The carbon-rich layer protected SiC against further corrosion, hence lowering the corrosion rate. The corrosion results of TiC–20% SiC and TiC–40% SiC revealed the corrosion resistance of TiC could be improved by adding SiC. And the contribution of SiC to better corrosion resistance has been elucidated.  相似文献   

2.
Electrically conductive nitrogen-doped SiC ceramics were exposed to molten FLiNaK at 700 °C for 100, 200, and 500 h, and at 1000 °C for 100 h in Ar atmosphere. The SEM-EDX investigations of corroded samples showed that the main corrosion attack proceeds through the intergranular phase, where the fluoride melt interacts with the oxide phases and partly dissolves also the SiC grains. It was proved that N-doped SiC has good corrosion resistance against molten FLiNaK. After corrosion at 700 °C for 100, 200, and 500 h the corroded layer thicknesses were 85, 90, and 120 µm, respectively.  相似文献   

3.
Spark plasma sintering of SiC-10, 20, or 30 wt% TaC composites was performed at 1800°C. Microstructures of sintered composites revealed uniform dispersion of TaC particles in SiC matrix. With the increase in TaC content, hardness decreased from 25.75 to 23.30 GPa and fracture toughness increased from 3.48 to 3.85 MPa m1/2. Erosion testing was performed to evaluate the potential of sintered composites at room temperature and 400°C by a stream of SiC particles impinging at different angles (30°, 60°, or 90°). The erosion rate varied from 25 to 166 mm3/kg, with change in TaC content, impingement angle, or temperature. The erosion rate increased as the angle of impingement and temperature increased, but reduced when the TaC concentration increased. Worn surfaces revealed that the material was dominantly removed via fracture of SiC grains and TaC particles pull-out. SiC-30 wt% TaC composites exhibited superior erosive wear resistance at low impingement angle and room temperature.  相似文献   

4.
《Ceramics International》2021,47(19):27100-27106
Grain boundaries typically dominate the electrical properties of polycrystalline ceramics. To understand the effect of grain boundaries on the electrical conductivity of SiC ceramics sintered with 2000 ppm Y2O3, the electrical resistivity of individual grains and multi-grains across boundaries at the micron scale was measured using a nano-probing system equipped with nano-manipulators. The results revealed that grain resistivity was bimodal because of the existence of a core/rim structure in grains, and the electrical resistivity of multigrain samples slowly increased with an increase in the number of grain boundaries crossed. Specifically, the electrical resistivity of a grain without a core, a grain with a core, a bicrystal with a single boundary, a sample crossing three boundaries, and a bulk polycrystalline sample were 2.36 × 10-1, 5.05 × 10-1, 4.80 × 10-1, 5.04 × 10-1, and 5.84 × 10-1 Ω cm, respectively. The results suggest that the electrical resistivity of polycrystalline SiC ceramics is primarily influenced by the presence of a grain boundary or core and secondarily by the number of boundaries.  相似文献   

5.
High-dense SiC-(TixZr1?x)B2 composite ceramics were fabricated by in-situ synthesis of (TixZr1?x)B2 solid solution using solid-state spark plasma sintering (SPS). 64 vol% SiC, 20 vol% ZrB2, 15 vol% TiB2, and 1 vol% graphite powders are chosen as raw materials. The composite ceramics has the relative density of 99.97 %, the Vickers hardness of 24.71 GPa, the flexure strength of 435 MPa and the fracture toughness of 8.05 MPa ? m1/2. Compared with the single-phase SiC ceramics and SiC-TiB2 composite ceramics, the fracture toughness of SiC-(TixZr1?x)B2 composite ceramics increased by 242.6 % and 53.6 %, respectively. A shell-core structure is found in the SiC-(TixZr1?x)B2 composite ceramics, in which (TixZr1?x)B2 solid solution is the core and fine SiC grain is the shell. The results show that the toughening effect of solid-state sintered SiC-(TixZr1?x)B2 composite ceramics is attributed to the shell-core structure.  相似文献   

6.
This research aimed to study the influence of different amounts of hBN additive on the mechanical properties and microstructure of TiB2-15 vol% SiC samples. All ceramics, containing 0, 3.5, and 7 vol% hBN, were sintered at 2000 °C using a hot-pressing route and reached their near full densities. Thanks to two different chemical reactions among the SiC reinforcement and the TiB2 surface oxides (B2O3 and TiO2), the in-situ phases of SiO2 and TiC were generated over the sintering process. The intergranular mode was identified as the predominant fracture type in all three composite samples. The hBN additive could contribute to grain refining of composites so that the sample containing 7 vol% hBN reached the finest microstructure. Finally, the highest Vickers hardness of 25.4 HV0.5 kg and flexural strength of 776 MPa were attained for the TiB2–SiC and TiB2–SiC-7 vol% hBN samples, respectively.  相似文献   

7.
SiC-ZrC composites with relative density in excess of 99% were prepared by reactive hot pressing (RHP) of SiC and ZrH2 at 1800 °C for 1 h. The reaction between SiC and ZrH2 resulted in the formation of ZrC1-x. The formation process and densification behavior during RHP process were investigated. Low temperature densification of SiC-ZrC composites is attributed to the formed nonstoichiometric ZrC1-x and the removal of SiO2 impurity on the surface of SiC particles. As reinforced phase, ZrC1-x has inhibiting effect on the abnormal grain growth of SiC, resulting in homogeneous microstructure of fine SiC grains. Adding 10 wt% ZrH2 to SiC, the formed SiC-4.62 vol% ZrC composite exhibited better mechanical properties (Vickers hardness of 27.6 ± 0.7 GPa, flexure strength of 448 ± 38 MPa, fracture toughness of 6.0± 0.3 MPa·m1/2, respectively) than monolithic SiC ceramic.  相似文献   

8.
To investigate the effects of SiC on microstructure, hardness, and fracture toughness, 0, 10, 20, and 30 vol% SiC were added to HfB2 and sintered by SPS. Upon adding SiC to 30 vol%, relative density increased about 4%; but HfB2 grain growth had a minimum at 20 vol% SiC. This may be due to grain boundary silicate glass, responsible for surface oxide wash out, enriched in SiO2 with higher fraction of SiC. By SiO2 enrichment, the glass viscosity increased and higher HfO2 remained unsolved which subsequently lead to higher grain growth. Hardness has increased from about 13 to 15 GPa by SiC introduction with no sensible variation with SiC increase. Residual stress measurements by Rietveld method indicated high levels of tensile residual stresses in the HfB2 Matrix. Despite the peak residual stress value at 20 vol% SiC, fracture toughness of this sample was the highest (6.43 MPa m0.5) which implied that fracture toughness is mainly a grain size function. Tracking crack trajectory showed a mainly trans-granular fracture, but grain boundaries imposed a partial deflection on the crack pathway. SiC had a higher percentage in fracture surface images than the cross-section which implied a weak crack deflection.  相似文献   

9.
《Ceramics International》2022,48(18):26177-26187
A carbon nanotube-carbon fibre/silicon carbide (CNT-CF/SiC) laminated composite, with a density of 1.61 g/cm3, thickness of 2.7–3.0 mm and conductivity of 6.10 S/cm, was prepared by densifying a single layer with boron-modified phenolic resin and then welding it with resin-derived carbon layer by layer. This laminated composite was alternately composed of a relatively dense CNT buckypaper/SiC composite layer and a relatively porous three-dimensional needled CF felt/SiC composite layer. The CF felt with a laminated constructure produced a laminated substructure nested within the layers. Expanded graphite with laminated structures produced laminated substructures nested within the interfaces. The average total shielding efficiency values of the composites with 5 layers (CNT-CF/SiC-5), 4 layers and a CNT buckypaper/SiC composite layer on the top surface, and 4 layers and a CF felt/SiC composite layer on the top surface were 45.14, 37.70 and 38.85 dB, respectively, throughout the X-band and were 52.31, 45.56 and 43.54 dB, respectively, throughout the Ku-band. The transmission coefficient of CNT-CF/SiC-5 was as low as 10?5?10?6 orders of magnitude over the entire frequency range of 8.2–18 GHz except for very few frequency points. The optimal number of layers for this multilevel and multiscale laminated composite is believed to be 5.  相似文献   

10.
Electron backscatter pattern analysis has been used to characterise, using the coincidence site lattice model, the distribution of grain boundary structures in a series of BaTiO3 based positive temperature coefficient of resistance (PTC) thermistors, prepared with 0, 1.0, 2.0 and 3.0 at.% SiO2 additions. As the SiO2 content was raised, the proportion of random, high-angle grain boundaries in the microstructure increased steadily from 85.7% to 89.6%, while the proportion of grain boundaries indexable in the range Σ3–Σ29 decreased from 14.3% to 10.4%, and the Σ3 grain boundary population fell from 5.9% to 3.6%. At the same time the proportion of Σ3 twin boundaries remained approximately constant at 3.0 ± 0.3%. Significantly more Σ3 grain boundaries than would be expected in a randomly oriented, untextured material were observed in all samples. The variation in grain boundary types with SiO2 addition is discussed in terms of grain boundary energy and its effect on PTC performance.  相似文献   

11.
Pure silicon carbide (SiC) ceramics were prepared through recrystallization sintering by using two types of SiC powder, with different particle sizes, as the raw materials. The effects of the fine powder content on the bulk density, porosity, flexural strength, and grain morphology were investigated. In the synthesis process, silicon nitride (Si3N4) was used as the sintering additive that decomposed and transformed into SiC to promote the growth of SiC grains. The added fine powder was exploited in the evaporation and condensation process and grain amalgamation caused by the movement of the grain boundaries. Thus, a dissimilar fine powder content modulated the microstructure and mechanical strength of the SiC ceramics. The results indicate that the bulk density and flexural strength increase to a maximum of 2.12 g/cm3, 44.2 MPa, respectively, when the fine powder content is 40 wt.%. Three kinds of grain morphologies, that is, uniform equiaxed grains, round, equiaxed grains, and hexagonal platelet grains, and the maximum average pore size (3.62 μm) are obtained when the fine powder content is between 0 wt.% and 60 wt.%. In addition, the main crystal phase 6H-SiC is partially converted to 4H-SiC when the fine powder content is up to 60 wt.%.  相似文献   

12.
ZrC–SiC ceramics were fabricated by high-energy ball milling and reactive hot pressing of ZrH2, carbon black, and varying amounts of SiC. The ceramics were composed of nominally pure ZrC containing 0 to 30 vol% SiC particles. The relative density increased as SiC content increased, from 96.8% for nominally pure ZrC to 99.3% for ZrC-30 vol% SiC. As SiC content increased from 0 to 30 vol%, Young's modulus increased from 404 ± 11 to 420 ± 9 GPa and Vickers hardness increased from 18.5 ± 0.7 to 23.0 ± 0.5 GPa due to a combination of the higher relative density of ceramics with higher SiC content and the higher Young's modulus and hardness of SiC compared to ZrC. Flexure strength was 308 ± 11 MPa for pure ZrC, but increased to 576 ± 49 MPa for a SiC content of 30 vol%. Fracture toughness was 2.3 ± 0.2 MPa·m1/2 for pure ZrC and increased to about 3.0 ± 0.1 MPa·m1/2 for compositions containing SiC additions. The combination of high-energy ball milling and reactive hot pressing was able to produce ZrC–SiC ceramics with sub-micron grain sizes and high relative densities with higher strengths than previously reported for similar materials.  相似文献   

13.
《Ceramics International》2020,46(11):18813-18825
This investigation intended to assess the influence of SiC morphology on the sinterability and physical-mechanical features of TiB2-SiC composites. For this aim, different volume percentages of SiC particles and SiC whiskers were introduced to TiB2 samples hot-pressed at 1950 °C for 2 h under an external pressure of 25 MPa. The characterization of as-sintered specimens was carried out using X-ray diffraction, optical microscopy, and scanning electron microscopy. The relative density studies revealed that SiCw had a more significant impact on the sinterability of TiB2-based composites. The XRD investigation confirmed the production of an in-situ TiC phase during the hot-pressing; however, some peaks related to the graphitized carbon also appeared in the patterns of SiCw-doped ceramics. The addition of 25 vol% SiCp halved the average grain size of TiB2 while introducing the same content of SiCw decreased this value by just around 20%. Finally, the highest Vickers hardness and fracture toughness were obtained for the sample reinforced with 25 vol% SiCw, standing at 29.3 GPa and 6.1 MPa m1/2, respectively.  相似文献   

14.
SiC-30vol%VB2 ceramic composite was pressureless densified at 2150 °C with excess B4C and C as sintering aids after in-situ formation of VB2 in SiC matrix. The sintered bulk gained a considerably high fracture toughness of 7.0 ± 0.4 MPa m1/2, which was ∼2.4 times as high as that of the monolithic SiC ceramic, owing to the existences of weak heterophase boundaries, thermal residual stresses and microcracks. Meanwhile, since the VB2 particle has a lower elastic modulus than SiC and significantly suppressed the grain growth of SiC, the composite exhibited a high flexural strength of 458 ± 36 MPa and a relatively low Young’s modulus of 356 ± 6 GPa, resulting in an increase of ∼59.3% in mechanical strain tolerance (1.29 × 10−3) compared with that of single-phase SiC ceramic. Besides, the residual stresses and microcracks also induced a lower-than-expected Vickers hardness of 20.8 ± 0.5 GPa in the composite.  相似文献   

15.
The effects of SiC whisker addition into nano-SiC powder-carbon black template mixture on flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics were investigated. The flexural strength of 1200°C-sintered porous silica-bonded SiC ceramics increased from 9.5 MPa to 12.8 MPa with the addition of 33 wt% SiC whisker because the SiC whiskers acted as a reinforcement in porous silica-bonded SiC ceramics. The thermal conductivity of 1200°C-sintered porous silica-bonded SiC ceramics monotonically increased from 0.360 Wm–1K–1 to 1.415 Wm–1K–1 as the SiC whisker content increased from 0 to 100 wt% because of the easy heat conduction path provided by SiC whiskers with a high aspect ratio. The specific flow rate of 1200°C-sintered porous SiC ceramics increased by two orders of magnitude as the SiC whisker content increased from 0 to 100 wt%. These results were primarily attributed to an increase in pore size from 125 nm to 565 nm and secondarily an increase in porosity from 49.9% to 63.6%. In summary, the addition of 33 wt% SiC whisker increased the flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics by 35%, 133%, and 266%, respectively.  相似文献   

16.
The hydrothermal corrosion behavior of SiC layer in tristructural-isotropic (TRISO) fuel particles and its effect on the fracture strength were investigated. The corrosion test was performed using the static autoclave at 400°C/10.3 MPa. The SiC layer exhibited a thickness loss and the corrosion rate followed a linear law. During corrosion, carbon was formed on the SiC surface due to the loss of Si. The corrosion was found preferentially occurred at the grain boundary of SiC, leading to the grain detachment and pit formation. The rate determining step of the corrosion was SiO2 formation rather than SiO2 dissolution in the hydrothermal environment. The fracture strength of SiC shell after corrosion was evaluated using the crush test. It showed a slight decrease with an increase in corrosion time, due to the thickness reduction in SiC layer. The results of this study demonstrated that the SiC in TRISO particles has good corrosion resistance in the hydrothermal environment.  相似文献   

17.
《Ceramics International》2022,48(20):29629-29640
In this work, Ni–Mo–SiC–TiN nanocomposite coatings were deposited on aluminium alloy by pulse electrodeposition with various electrodeposition parameters. The influences of the pulse frequency and duty cycle on the phase structure, morphology, mechanical and corrosion performance of the coatings were systematically investigated. The results showed that with increasing pulse frequency and decreasing duty cycle, the content of embedded duplex nanoparticles increased, and the grains refined gradually. The nanocomposite coating that was prepared at 20% duty cycle and 1000 Hz pulse frequency exhibited compact, uniform, and fine microstructures with the maximum incorporation of nanoparticles (6.81 wt% TiN and 1.72 wt% SiC). The wear rate and average friction coefficient then declined to 4.812 × 10?4 mm3/N·m and 0.13, respectively, with a maximum microhardness of 519 HV. Simultaneously, the corrosion current density was reduced to 3.11 μA/cm2, and a maximum impedance of 34888 Ω cm2 was exhibited. The uniformly distributed duplex nanoparticles acted as a hindrance, which consequently supported the enhancement of corrosion and wear resistance. By investigating the variation of the pulse diffusion layer with electrical parameters, it was discovered that when the crystallite size is equivalent to or smaller than the diffusion layer thickness, it would be easier to cross the diffusion layer to incorporate in the coating. Additionally, the effects of various duty cycles and pulse frequencies on the nucleation process of the grains were discussed.  相似文献   

18.
《Ceramics International》2022,48(11):15073-15081
SiC is a widely used material. Understanding how oxygen content affects the SiC structure and properties is crucial. In this paper, heat treatment was used to prepare SiC powder samples with different oxygen contents, which were doped with AlN and ZrB2 and were densified by pressureless sintering at 2050 °C. The effect of oxygen content on the sintered SiC structure was determined by X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results indicated that the oxygen content influenced the SiC phase composition, grain boundaries, and densification. Additionally, the interaction between oxygen defects and AlN played an important role in sintering. The nanoindentation, alternating-current impedance, and thermal conductivity of the densified SiC specimens were also evaluated to elucidate the influence of the oxygen content on the densified-SiC functional properties. The results revealed that the oxygen content affected all the measured mechanical, electrical, and thermal properties. Furthermore, surface oxygen impurities suggested that oxygen content had similar critical effects on both the densified SiC structure and properties.  相似文献   

19.
The effects of B4C content on the specific stiffness and mechanical and thermal properties of pressureless-sintered SiC ceramics were investigated. SiC ceramics containing 2.5 wt% C and 0.7–20 wt% B4C as sintering aids could be sintered to ≥ 99.4% of the theoretical density at 2150 °C for 1 h in Ar. The specific stiffness of SiC ceramics increased from 136.1 × 106 to 144.4 × 106 m2‧s−2 when the B4C content was increased from 0.7 to 20 wt%. The flexural strength and fracture toughness of the SiC ceramics were maximal with the incorporation of 10 wt% B4C (558 MPa and 3.69 MPa‧m1/2, respectively), while the thermal conductivity decreased from ∼154 to ∼83 W‧m−1‧K−1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 20 wt% B4C were ∼346 MPa and ∼105 W‧m−1‧K−1, respectively.  相似文献   

20.
《Ceramics International》2023,49(20):32799-32807
Al2O3/ZrO2/SiC ceramic composites with different SiC contens have been prepared by hot pressuring. The effect of SiC content on the microstructure and mechanical properties of composites have been studied. The results show that SiC has obvious grain refinement effect on ZTA ceramics and change the fracture mode of the matrix from intergranular fracture to transgranular fracture. Simultaneously, it has been found that the mechanical properties of the material are significantly enhanced in comparison with ZTA matrix. The highest strength is acquired at 10% SiC content, the flexural strength and toughness are obtained when the SiC content is 15 vol%, and the values are 18.86 GPa, 1262 MPa and 6.13 MPa m1/2, respectively. The mechanisms of hardening, strengthening and toughening have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号