首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2015,41(6):7582-7589
Fe (iron)-doped TiO2 nanorods were grown on fluorine doped tin oxide (FTO) substrates with various Fe doping concentrations using modified chemical bath deposition (M-CBD). We investigated the effects of Fe doping concentration on the morphological, structural, optical, and photoelectrochemical (PEC) properties of the TiO2 nanorods. From this study, it was found that the PEC properties were mainly dependent on the morphological and optical properties of the Fe-doped TiO2 nanorods. At low Fe doping concentration, the PEC properties were highly affected by the optical properties. On the other hand, the PEC properties were significantly affected by the morphological properties at high doping concentration. We observed a maximum photocurrent density of 0.48 mA/cm2 at a Fe doping concentration of 2 at% from this study. In addition, the donor density and flat-band potential of the Fe doping concentration from the Mott–Schottky plot were analyzed.  相似文献   

2.
《Ceramics International》2022,48(9):12660-12674
Zinc oxide is one of the most versatile nanostructured materials with a broad range of applications. Besides, its physicochemical properties can be tuned easily by synthesis conditions to be optimal for a specific application. In our group, we aim for the production of visible light-active materials with enhanced antimicrobial activity. Thus, we synthesize ZnO–Cu2+and Ag@ZnO–Cu2+ by using a fast and robust microwave solvothermal reaction. We investigate the limit of solubility of Cu2+into ZnO lattice producing Cu doped ZnO materials with different doping levels (1, 2, 3, 4, and 5 at. %, Cu/Zn). We also investigate the role of the copper precursor, using copper(II) acetate or copper(II) sulfate as model precursors. Copper acetate incorporates more efficiently into ZnO lattice by decreasing the Eg value of the doped materials at low doping levels. Furthermore, we study the composites Ag@ZnO–Cu2+ aiming to reduce doping levels and to improve antimicrobial activity. Characterization of the materials by different techniques demonstrates their uniform size, purity, crystallinity, and visible light activity. In this study, we evaluate airborne fungal contamination and demonstrate the capacity of ZnO–Cu2+ and Ag@ZnO–Cu2+ to inhibit fungal growth. We studied the microbiological quality of indoor air (vivarium) by sampling air under different conditions. By sampling air with a photocatalytic prototype, the amount of fungi in the air decreases considerably, particularly fungi that can enter the lung. In addition, ZnO–Cu2+ shows excellent antifungal activity against Candida sp at low doses. We use Atomic force microscopy (AFM) and holotomographic microscopy (HTM) to provide further evidence on the capacity of the prepared materials to achieve effective damage to fungal cells and to inhibit biofilm formation.  相似文献   

3.
《Ceramics International》2023,49(8):12231-12239
Ultra-rapid microwave-assisted hydrothermal synthesis was performed, zinc oxide nanoparticles were fabricated and doped with gallium. Different times (5, 15, and 30 min) and concentrations of doped Ga (1, 3, and 6%) were used to improve their characteristic properties. In addition, the relation between time/dopant was analyzed. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and UV–Vis diffuse reflectance spectroscopy. Photoluminescence (PL) to verify number of defects. SEM analysis showed the formation of nanorods morphology even with a short synthesis time. The X-ray diffractograms and Raman spectra suggest the successful insertion of Ga into the ZnO lattice. The crystallite size obtained by doping was between 36 and 50 nm. The lattice parameters determined by the Rietveld refinement confirmed the formation of a wurtzite hexagonal structure. The band gap range found was 3.12–3.22 eV, which increases the potential of ZnO for optical applications. The presence of defects as result of doping was confirmed by PL. The microstructural changes of the material are enhanced by doping, which causes the photocurrent to increase from 0,002 to 0.012 mA/cm2 in doped ZnO. The synthesis time and Ga doping facilitated the production of ZnO nanoparticles with improved properties.  相似文献   

4.
U. Bertocci 《Electrochimica acta》2004,49(11):1831-1841
The oxidation and reduction of copper (Cu), either electrodeposited or vapor deposited onto quartz crystal resonators, was examined in borate/boric acid mixtures at two different pH values, comparing electrochemical measurements with mass changes. The results showed that at pH 8.8, Cu dissolution significantly influences the microbalance readings. It was found that, when surface oxidation during potentiodynamic scans is limited in the anodic direction, the first reduction peak is caused by Cu redeposition and not by oxide reduction. At pH 10.0, Cu dissolution is minimal, and the microbalance signal is given by surface oxidation or reduction. Comparing charge and mass data, it was found that the reaction Cu+↔Cu is the formation or reduction of Cu2O, while the reaction Cu2+↔Cu+ most likely involves some hydroxide.  相似文献   

5.
The extraction of Cu(II) from nitrate medium using CYANEX 302 (bis(2,4,4-trimethylpentyl) monothiophosphinic acid) in kerosene under equilibrium conditions showed that copper is first extracted as Cu2+ followed by reduction of CuA2 (HA)2 to Cu+ while the CYANEX 302 extractant is correspondingly oxidized. The stripping of Cu(II) from loaded organic solutions by using different stripping agents showed that effective stripping is obtained upon using high concentration of nitric acid which oxidizes the extracted Cu(I) to Cu(II).  相似文献   

6.
《Ceramics International》2023,49(8):12518-12528
In China, a large amount of serpentine tailings and waste printed circuit boards (WPCBs) are produced every year. Serpentine tailings contain about 43% SiO2 and WPCBs contain about 20% Cu. Reusing their resources can not only solve the problem of environmental pollution, but also produce certain economic benefits. In this study, waste-based SiO2 support, waste-based Cu–Cu2O and Cu–Cu2O/SiO2 photocatalyst were prepared using serpentine tailings and WPCBs as Si and Cu sources. The waste-based SiO2 of 750 nm particle size was obtained by precipitation of 0.7 mol/L Na2SiO3 solution from the serpentine tailings and its specific surface area reached 57.72 m2/g after 600 °C calcination. Cu and the waste-based Cu–Cu2O were loaded on the waste-based Cu2O and SiO2 support, respectively, and the phase structure of the catalysts has not changed by the characterization of SEM, XRD and XPS. The activity of the photocatalytic reduction of Cr (VI) with the waste-based catalysts showed in the following order: Cu2O < Cu2O/SiO2<Cu–Cu2O < Cu–Cu2O/SiO2, inferring by the investigation of photoelectric properties that Cu prevented the recombination of Cu2O electron-hole pairs, the Cu–Cu2O dispersed on SiO2 support surface to obtain a higher specific surface area. The waste-based Cu–Cu2O/SiO2 photocatalyst showed no obvious deactivation after 5 cycles. The mechanism revealed that photogenerated electrons are the major reactive species for the photodegradation of Cr (VI). The study indicates that the waste-based Cu–Cu2O/SiO2 is potentially a developed, low-cost catalyst from sustainable resources. The production of Cu–Cu2O/SiO2 photocatalyst by using WPCBs and serpentine tailings represents the potential usage of waste into valuable material.  相似文献   

7.
Electrochemical properties of poly(3,4-ethylenedioxythiophene) doped with hexacyanoferrate(II,III) ions (PEDOT(HCF)) were studied in the presence of Cu2+ ions. Voltammetric and EDAX studies revealed retention of hexacyanoferrate anions in the polymer film and accumulation of Cu(II) cations, as well as formation of solid copper hexacyanoferrate near the polymer surface.Accumulation of Cu2+ ions was found to be advantageous from the point of view of PEDOT(HCF) applications as a solid contact (ion-to-electron transducer) in all-solid-state Cu2+-selective electrodes with solvent polymeric polyvinyl chloride (PVC) based membrane, containing Cu2+-selective ionophore. Binding of Cu2+ ions in the conducting polymer layer results in analyte ions flux into the transducer phase. Thus, pronounced enhancement of selectivity of the all-solid-state Cu2+-selective electrode or lower detection limit of the potentiometric response range was achieved, reaching under optimised conditions 10−7 M CuSO4.  相似文献   

8.
Cu+2 ion doped polyanilines (PANI) were synthesized by oxidative polymerization of aniline using ammonium persulphate in presence of copper sulphate solution having varying Cu+2 ion concentration. Products were characterized by UV?CVis and FTIR spectroscopy. Morphology of the products was observed by SEM. Morphology of the emeraldine-base form of PANI (EB-PANI) changed when doped with Cu+2 ion and its concentration had also shown influence on the morphology. Thermal stability of the Cu+2 doped PANI was found to be less than that of EB-PANI. Experimental results showed that Cu+2 ions were successfully incorporated into the polymer and there was a strong interaction between the Cu+2 ions and PANI chains. Formation of semiquinone segments (polaron species) upon coordination with Cu+2 ions was undoubtedly demonstrated by UV?CVis and FTIR spectroscopic results. FTIR spectroscopy showed shifts towards the lower wavenumbers for the Cu+2 ion doped PANI as compared to EB-PANI. An increase in intensity of the band at 1,130?cm?1 was observed which corresponds to the electronic like absorption confirming the doping of EB-PANI. Crystallinity was studied by powder XRD analysis and it was found that Cu+2 ion doped PANI has developed a crystalline structure while EB-PANI is amorphous. Conductivity was found to be dependent on the concentration of the Cu+2 ions and there was an optimum concentration of Cu+2 ions for getting the highest conductivity.  相似文献   

9.
Trace amounts of MgO were doped on Cu/ZnO/Al2O3 catalysts with the Cu/Zn/Al molar ratio of 45/45/10 and tested for the water–gas shift (WGS) reaction. A mixture of Zn(Cu)–Al hydrotalcite (HT) and Cu/Zn aurichalcite was prepared by co-precipitation (cp) of the metal nitrates and calcined at 300 °C to form the catalyst precursor. When the precursor was dispersed in an aqueous solution of Mg(II) nitrate, HT was reconstituted by the “memory effect.” During this procedure, the catalyst particle surface was modified by MgO-doping, leading to a high sustainability. Contrarily, cp-Mg/Cu/Zn/Al prepared by Mg2+, Cu2+, Zn2+ and Al3+ co-precipitation as a control exhibited high activity but low sustainability. Mg2+ ions were enriched in the surface layer of m-Mg–Cu/Zn/Al, whereas Mg2+ ions were homogeneously distributed throughout the particles of cp-Mg/Cu/Zn/Al. CuO particles were significantly sintered on the m-catalyst during the dispersion, whereas CuO particles were highly dispersed on the cp-catalyst. However, the m-catalyst was more sustainable against sintering than the cp-catalyst. Judging from TOF, the surface doping of MgO more efficiently enhanced an intrinsic activity of the m-catalyst than the cp-catalyst. Trace amounts of MgO on the catalyst surface were enough to enhance both activity and sustainability of the m-catalyst by accelerating the reduction–oxidation between Cu0 and Cu+ and by suppressing Cu0 (or Cu+) oxidation to Cu2+.  相似文献   

10.
《Ceramics International》2022,48(22):32787-32797
A simple sol-gel approach was used to synthesize Cu doped Bismuth Selenide nanoparticles denoted as CuxBi2-xSe3 (x = 0.1, 0.2), in order to comprehend the effect of Cu-dopant on the photocatalytic and antibacterial activity of Bismuth Selenide. The structural properties of prepared samples were investigated by the XRD technique and results showed the formation of hexagonal CuxBi2-xSe3 (x = 0.1, 0.2). The average crystallite size of CuxBi2-xSe3 was found to increase from 39 nm to 42 nm with the increase in the concentration of Cu ions. Atomic force microscopy (AFM) was used to confirm the morphology and particle size of prepared samples. Photoluminescence (PL) studies revealed the decrease in band gap from 1.66 eV to 1.61 eV for Cu0.1Bi1.9Se3 and Cu0.2Bi1.8Se3, respectively. The Raman spectra of CuxBi2-xSe3 (x = 0.1, 0.2) showed two vibrational modes at 130 cm?1 and 170 cm?1. The photocatalytic performance of prepared nanoparticles was evaluated by the removal of methyl blue (MB) and malachite green (MG), under natural sunlight. Cu doped Bismuth Selenide Cu0.2Bi1.8Se3 exhibited higher photocatalytic activity as compared to Cu0.1Bi1.9Se3 and undoped Bismuth Selenide with the 97% and 99% degradation of MB and MG, respectively. Hence, Cu doping proved an efficient way to enhance the photocatalytic response of Bismuth Selenide. Through the antibacterial activity, it was further disclosed that the Cu doped samples had better inhibition zones than undoped Bismuth Selenide. The maximum inhibition zone (29 mm) was observed at optimum doping concentration for Cu0.2Bi1.8Se3. From the results, it can be deduced that Cu0.2Bi1.8Se3 can be as effective photocatalytic and antibacterial agent to treat water pollution.  相似文献   

11.
Nanoparticles of zinc oxide and of ZnO doped with MgO in different concentrations (1, 2 and 4 mol%) were synthesized in a controlled and reproducible way, using the Pechini polymer precursor method. To determine the physicochemical and structural characteristics of the synthesized nanoparticles, Fourier transform IR (FTIR), X-ray diffraction (XRD), UV–Vis spectroscopy and transmission and scanning electron microscopy (TEM and SEM) were used. Characterization revealed the particles obtained to be nanometric in size (<50 nm) and with a deformed hexagonal morphology. Taking into account the doping percentage, the energy gap value varied between 3.3 eV for pure ZnO and 3.45 eV for ZnO with 4 mol% of Mg, which indicates that the optical properties of these nanoparticles were affected by dopant concentration. The effect of doping with Mg2+ on the capacity for removal of pollutant molecules by ZnO, for different working conditions, was evaluated by studying the removal of methyl orange (MO) in aqueous solution. Irradiation of the compounds led to a greater removal of MO from the solution such that all ZnO samples doped with MgO showed higher photoactivity than ZnO. The ZnO nanoparticles doped with 2% Mg were the most efficient in removing MO, achieving a removal percentage of ~73% after 2 h of testing and a totally transparent solution after 3 h of treatment. The kinetics of removal of MO promoted by this sample was best represented by pseudo-first-order kinetics. The results of this work showed that on combining a photosensitive semiconductor, ZnO, with a wide band gap insulator, MgO, Zn–Mg solid solutions are obtained that showed adequate capacity to remove contaminating organic molecules, specifically MO.  相似文献   

12.
The engineered photoelectrodes have received significant attention in the photoelectrochemical (PEC) applications. Herein, we prepared a highly effective photoelectrode based on Cu2O decorated with ZnO and rGO for efficient PEC water splitting. Firstly, different thickness Cu2O is sputtered on the FTO substrate (FC). The PEC performance of the FC photoelectrode further improved by depositing the ZnO and rGO protection layers (FCZG). The fabricated photoelectrodes are systematically investigated for their morphological and crystal structure by AFM, FESEM, TEM, XPS, XRD, and RAMAN, UVDRS, and PL analysis. The FCZG hybrid photoelectrode exhibit a photocurrent density of 4.94 mA cm?2 at 0 V vs. reversible hydrogen electrode (RHE), which is 1.5 times higher than the unmodified photoelectrodes. The improved PEC performance of the FCZG hybrid photoelectrode is due to the high surface roughness, larger electrochemical active surface area, and less radiative recombination rate of the photogenerated charge carriers.  相似文献   

13.
A series of copper species, Tb3+, Mn2+ single‐ and co‐doped oxyfluoride glasses were synthesized by a melt‐quenching method. The photoluminescence properties of the glasses containing copper species were demonstrated. Results indicate that the blue‐green emission band peaking at 440 nm was observed, which was ascribed to the photoluminescence of Cu+ ions rather than the emissions of Cu2+ cations or Cu nano‐particles (Cu NPs) induced by local field effect (LFE) enhancement through surface plasmon resonance (SPR). The interaction mechanisms between Cu+ and Tb3+/Mn2+ have been systematically investigated, and significant enhancement of Cu+ emission and the energy‐transfer (ET) efficiencies of Cu+→Tb3+ and Cu+→Mn2+ were observed in glasses doped with SnO reducing agent. Furthermore, a wide‐range‐tunable emission and ideal white‐light fluorescence were realized in Cu+/Tb3+/Mn2+‐coactivated glasses by utilization of Cu+ cations as dual ET contributors from deep‐UV‐source to multiactivators. Our research further extends the understanding of the interactions between Cu+ and Tb3+/Mn2+ in amorphous materials.  相似文献   

14.
The kinetics of the ligand exchange reaction of the Cu(II)-ammine complex with poly(vinyl alcohol) (PVA) has been studied by a stopped-flow method at pH 9–10, at μ=0.1 (NH4Cl) and at 25°C. The reaction is initiated by the formation of unstable [Cu(NH3)3]2+ by the attack of H+ on Cu(II)-ammine complex, and proceeds through the mixed complex {[Cu(NH3)3(O?PVA)]2+}. This step may be rate-determining, followed by a rapid reaction. Finally, the Cu(II) ion is taken up by PVA. The rate is given by d[Cu(II)?PVA]/dt=k[H+]{[Cu(NH3)4]2+}[PVA]/[NH4Cl], where k=k1 + k2[H+], k1=4.25× 10s?1 and k2=5.20× 1011l mol?1s?1.  相似文献   

15.
《Ceramics International》2023,49(12):19861-19869
Cu2O based semiconductor materials are promising candidates for modern electronic devices due to have excellent electronic and optical properties. In this work, pure and Ag doped Cu2O structures were simulated using density functional theory in the framework of wien2k code with generalized-gradient-approximation under full potential linearized augmented plane wave approach. Experimentally, pure and Ag doped Cu2O uniform thin films were successfully fabricated. The morphology and elemental compositions of thin films were investigated using field emission scanning electron microscopy and energy dispersive x-rays spectroscopy, respectively. X-ray diffraction analysis exhibited cubic phase having space-group 224-Pn-3m in all synthesized thin films. Total density of states spectra for Ag containing compositions present overlapping of states at Fermi level. Thermoelectric properties show a significant variation in various parameters with the change in temperature and Ag content in structure. The see-beck coefficient was observed to vary from 0.0002 to 0.00035 Vk−1 for pure and Ag doped Cu2O compositions. The optical parameters like extinction and absorption curves attains maximum values at higher photon energies. The refractive index presents an enhanced transmittance power with the increment in photon energy. The band gap was found to reduce from 2.33 eV to 1.99 eV with Ag doping attributed to the sharp increase in optical conductivity.  相似文献   

16.
《Ceramics International》2020,46(10):16524-16532
Yttrium iron garnet (YIG) nanoparticles (NPs) doped with rare earth (RE) metal ions (Y2.5Sm0.5Fe5O12, Y2.5Nd0.5Fe5O12) were successfully synthesized by sol-gel auto combustion approach. The cubic crystalline structure and morphology of the prepared garnet ferrite NPs were analyzed by X-ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM). The cubic crystalline garnet phase of the synthesized YIG, Sm-YIG and Nd-YIG samples was successfully achieved at 950 °C sintering temperature. The force constant and absorption bands were estimated by using Fourier transform infrared spectroscopy (FTIR). The doping effect of RE metal ions on the chemical states of YIG were examined by x-ray photoelectron microscopy (XPS). The valence band (from 12.63 eV to 13.22 eV), conduction band (from 10.89 eV to 11.34 eV) edges and optical bandgap values of RE doped YIG samples were calculated using UV–Vis spectroscopy and ultraviolet photo electron spectroscopy (UPS). The magnetic analysis of the prepared NPs was studied using vibrating sample magnetometer (VSM). The XPS analysis of RE doped YIG samples exhibit the existence of RE (Sm+3, Nd+3) contents on the surface of YIG ferrite by decreasing the oxygen lattice in garnet structure. The optical bandgap (from 1.74 eV to 1.88 eV) explains the semiconducting nature of the synthesized NPs. The UPS results confirm the valence band position of YIG doped samples. The saturation magnetization and remanence of RE doped garnet ferrite samples increased from 13.45 to 18.83 emu/g and 4.06–6.53 emu/g, respectively.  相似文献   

17.
Sodium‐doped ZnO (ZnO:Na) nanowires were grown with a high‐pressure pulsed‐laser deposition process on silicon substrates using sputtered gold particles as catalysts. The introduction of sodium dopants into ZnO nanowires was confirmed by both X‐ray diffraction spectrum and X‐ray photoelectron spectroscopy. The morphology and microstructural changes in ZnO nanowires due to sodium doping were investigated with scanning electron microscope, high‐resolution transmission electron microscope, and Raman spectrum. Detailed photoluminescence studies of ZnO:Na nanowires revealed characteristic sodium acceptor‐related peaks, for example, neutral acceptor‐bound exciton emission (A0X, 3.356 eV), free‐to‐neutral‐acceptor emission (e, A0, 3.314 eV), and donor‐to‐acceptor pair emission (DAP, 3.241 eV). This indicated that sodium doping induces stable acceptor level with a binding energy of 133 meV in ZnO:Na nanowires.  相似文献   

18.
By carefully balancing synergies and antagonisms that arise from incorporating Cu and Ag within a single ZnO-based catalytic platform, the photocatalytic activity of Ag/ZnO based on three-dimensional modified ceramic structures can be further significantly enhanced. The performance of Ag/ZnO heterostructure (Z0) was significantly improved by only 0.2 mol% Cu incorporation (Z0.2) and the first-order degradation kinetics constants (K) of Z0.2 were 2 and 1.5 times higher than that of Z0 under simulated sunlight and UV light. The synergies between Cu dopants and metallic Ag were mainly the significantly enhanced visible light absorption capacity and the prolonged photo-excited charge lifetime. However, with the excessive introduction of Cu precursors, the surface Cu2+ was found to inhibit the interfacial charge transfer between Ag and ZnO NPs under UV and visible light irradiation, but the transformation from Cu2+ to Cu+ was also presumed to be a driving factor for the improvement of photocatalytic efficiency. These interactions may provide a useful pathway for enhancing photocatalytic efficiency of low-cost ZnO-based catalytic platforms.  相似文献   

19.
For the dehydrogenation of cyclohexanol a series of Cu–ZnO/SiO2 catalysts with various Cu to ZnO molar ratios was prepared using the impregnation method, with the loading of copper fixed at 9.5 at.%. The catalysts were characterized by XPS, H2–N2O titration, BET, H2-TPR, NH3-TPD and XRD techniques. The results indicate that the addition of ZnO can improve the dispersion of copper species on reduced Cu–ZnO/SiO2 (CZS) catalysts. Cu0 and Cu+ species were found on the reduced CZS catalysts surface, and the amount of Cu+ increased with the content of ZnO increasing. The addition of ZnO increased the acidity of the CZS catalysts. However, only Cu0 species can be found on the reduced Cu/SiO2 (CS) catalyst surface. According to the reaction results, we found that the selectivity to phenol was related to the amount of Cu+ species, the Cu+ species should be the active sites for the production of phenol, the Cu0 is responsible for cyclohexanol dehydrogenation to cyclohexanone.  相似文献   

20.
Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst   总被引:1,自引:1,他引:0  
The behavior and role of ZnO in Cu/ZnO catalysts for the hydrogenations of CO and CO2 were studied using XRD, TEM coupled with EDX, TPD and FT-IR. As the reduction temperature increased, the specific activity for the hydrogenation of CO2 increased, whereas the activity for the hydrogenation of CO decreased. The EDX and XRD results definitely showed that ZnO x (x = 0–1) moieties migrate onto the Cu surface and dissolve into the Cu particle forming a Cu-Zn alloy when the Cu/ZnO catalysts were reduced at high temperatures above 600 K. The content of Zn dissolved in the Cu particles increased with reduction temperature and reached 18% at a reduction temperature of 723 K. The CO-TPD and FT-IR results suggested the presence of Cu+ sites formed in the vicinity of ZnO x on the Cu surface, where the Cu+ species were regarded as an active catalytic component for methanol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号