首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Metal oxide nanoparticles and their composites with conducting polymers, specifically Polyaniline (PANI) were utilized for fabricating nanoscale supercapacitor (SC) electrode materials. In the present study, we have synthesized pristine Pr2O3, NiO, Co3O4 nanoparticles, binary PANI-Pr2O3, PANI-NiO, PANI-Co3O4, ternary Pr2O3–NiO–Co3O4, and quaternary PANI-Pr2O3–NiO–Co3O4 spherical core-shell nanocomposite using co-precipitation and ultra-sonication methods. The grown samples were characterized with different analytical techniques. The XRD pattern revealed that the as-synthesized products were crystalline with Pr2O3 hexagonal phase, NiO cubic phase, and Co3O4 cubic phase in pure and nanocomposites. The Williamson-Hall, Scherrer, and size-strain plot methods were employed to study the crystalline development and contribution of micro-strain. FTIR pattern exhibited the metal-oxygen and PANI bond vibrations. FE-SEM images shown the spherical core-shell shape morphology of quaternary nanocomposite. EDX evident the presence of praseodymium, cobalt, and nickel in synthesized samples. UV–vis spectroscopy confirmed the absorption in the visible region. The IV graphs showed a higher conductivity of quaternary nanocomposite. The cyclic voltammetry results revealed that the quaternary nanocomposite has a higher specific capacitance 500 Fg-1 as compared to binary nanocomposites 134 F g?1 (PANI-Pr2O3), 143 F g?1 (PANI-Co3O4), 256 F g?1 (PANI-NiO), and PANI (90.8 F g?1) at a scan rate of 5 m Vs?1. The GCD results also showed that the quaternary nanocomposite has a higher specific capacitance of 905 F g?1 at current density 1 A g?1 with maximum energy density and power density of 87.99 kWhkg-1 and 2.6 k W kg?1, respectively. The EIS curve also confirmed that the quaternary nanocomposite has a lower polarization resistance (Rp) and solution resistance (Rs). The higher capacitance of quaternary nanocomposite can facilitate ion transfer, and the formation of its core-shell structure flourish to enhance surface-dependent electrochemical properties. Furthermore, this study gives a novel research idea to manufacture electrode materials for supercapacitors.  相似文献   

2.

Hybrid nanocomposites have shown their excellent potential in energy storage devices particularly in electrochemical supercapacitors to meet the forthcoming demand in the energy sector applications. Novel hybrid composited displayed the dual nature of electrochemical double layer and pseudocapacitive behaviour, which makes them more advantageous in supercapacitor device fabrication. Zinc cobaltite (ZnCo2O4) nanostructures have been prepared by precipitation route and the structural, optical and electrochemical properties of the final product were analyzed. X-ray pattern showed the spinal cubic phase structure with fine nano-crystallites. The FTIR and Raman spectrum confirmed the presence of surface functional groups and confirmed the formation of high-quality ZnCo2O4 nanocrystals. XPS and EDX spectrum showed the high purity and good crystallinity nature of the as-prepared ZnCo2O4 nanocrystal. FE-SEM and TEM analysis exhibits the bundle like morphology of the final product. Finally, the as-prepared ZnCo2O4 nanostructure was investigated by cyclic voltammetry (CV), galvanic charge–discharge analysis (GCD) and electrochemical impedance spectroscopy (EIS) to check its suitability. The electrochemical investigation demonstrated the highest capacitance of 159 F g?1 at 2 mA cm?2 in 2 M KOH electrolyte and the long cyclic test showed the 92% initial capacitance retention over 2500 cycles. It reveals/demonstrated that the spinel ZnCo2O4 nanostructures own a promising usage in devices for electrochemical energy storage.

  相似文献   

3.
The exploration of high performance supercapacitors has received emerging the worldwide research interests in satisfying the gradually increased energy consumption. In this paper, we adopt a facile hydrothermal strategy to synthesize ternary FeCo2O4 directly on nickel foam. A series of structure such as nanowires, nanoflake@nanowire hetero-structure and hierarchical nanospheres have been achieved via modulating the synthetic time. The morphology and structure of the as-prepared samples are characterized by using scanning electron microscopy and X-ray diffraction spectroscopy. The relationship between the detail processing parameters and electrochemical performance are also revealed by cyclic voltammetry, galvanostatic charge-discharge measurements, cycle stability tests and electrochemical impedance spectroscopy. Notably, the as-prepared nanoflake@nanowire hetero-structure exhibits a high specific capacitance of about 969 F g?1 at 2 A g?1 in alkaline aqueous solution and a remarkable cycling stability (91% capacity retention after 2000 cycles). The excellent supercapacitors performance of nanoflake@nanowire hetero-structure can be attributed to the high conductivity, large active area as well as robust architectures that derive from structural synergetic effects. Furthermore, a symmetric all solid-state supercapacitor has been fabricated by using nanoflake@nanowire hetero-structure as both the anode and cathode electrodes. The as-fabricated supercapacitor delivers excellent electrochemical performance. It's anticipated that FeCo2O4 would be a promising material for electrochemical energy storage applications.  相似文献   

4.
The synthesis of polyaniline (PANI) with H4Nb6O17 (HNbO) to form PANI/HNbO lamellar nanocomposite by in situ polymerization using aniline (ANI) intercalation compound ANI/HNbO as the intermediate has been investigated. The properties of the samples were characterized by means of XRD, SEM, TEM, FT‐IR, UV–vis spectroscopy, and TG‐DTA. The in situ polymerization of ANI packed in a regular orientation in a mono‐ and bilayers (i.e., pseudo‐bilayers) structure within the HNbO interlayers led to PANI/HNbO nanocomposite powder using (NH4)2S2O8 as the catalyst with PANI monolayer packing orientation within the HNbO interlayers. PANI/HNbO nanocomposite showed improved thermal stability compared with original PANI by TG analysis. The PANI/HNbO nanocomposite was studied by cyclic voltammetry (CV), which indicated the good redox activity and electrochemical‐cycling stability in acidic solution. The interaction between PANI and nanosheets greatly affected the electrochemical behavior of PANI/HNbO nanocomposite. Two couples of redox peaks corresponded to two oxidation process of PANI in acid conditions. The PANI/HNbO nanocomposite exhibited much higher photocatalytic activities for the degradation of methylene blue (MB) in aqueous solution under visible light irradiation than HNbO itself. POLYM. COMPOS., 34:834–841, 2013. © 2013 Society of Plastics Engineers  相似文献   

5.
Developing appropriate stable electroactive electrode materials for supercapacitor application is the challenging issue, which attracts enormous attention in recent decades. In this regard, Fe3O4 nanoparticles are firstly synthesized on chitosan/graphene oxide-multiwall carbon nanotubes (CS/GM/Fe3O4). Then, polyaniline (PANI) is grafted on it via in situ chemical polymerization and named as CS/GM/Fe3O4/PANI. The as-prepared nanocomposites are characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. The capacitive properties of the electrodes are investigated in a three electrode configuration in 0.5 M Na2SO4 electrolyte by various electrochemical techniques. The specific capacitance of CS/GM/Fe3O4/PANI electrode is 1513.4 Fg−1 at 4 Ag−1 which is 1.9 times higher than that of CS/GM/Fe3O4 (800 Fg−1). Meanwhile, the electrodes exhibit appropriate cycle life along with 99.8% and 93.95% specific capacitance at 100 Ag−1 for chitosan/GO-CNT/Fe3O4 and polyaniline grafted chitosan/GO-CNT/Fe3O4, respectively.  相似文献   

6.
Peroxidase-catalyzed template-guided polymerization of aniline in the presence of γ- alumina nanosheet (NS) particles have been carried out in aqueous media and γ-Al2O3/PANI nanocomposite was obtained. The polymerization of aniline occurred in aqueous solution in the presence of SPS (sulfonated polystyrene) as a template and SDS (sodium dodecyl sulfate) as a surfactant. Both obtained nanocomposites were comparable by SEM images. It was demonstrated that the γ-Al2O3 NS/PANI-SPS nanocomposite has higher conductivity and the γ-Al2O3 NS/PANI-SDS nanocomposite has higher void areas. The higher conductivity of γ-Al2O3 NS/PANI-SPS nanocomposite is attributed to the higher coated areas of γ-Al2O3 NS during polymerization in comparison with γ-Al2O3 NS/PANI-SDS which are not coated efficiently as the former. The FT-IR studies showed that the γ-Al2O3 NS/PANI nanocomposite was formed by interaction of the polyaniline (PANI) and γ-Al2O3 NS. FTIR also showed that the amount of PANI in γ-Al2O3 NS/PANI-SPS is more than in γ-Al2O3 NS/PANI-SDS. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
Polyaniline (PANI)/silver (Ag) nanocomposites were successfully synthesized within a sodium dodecyl sulfate reverse micro‐emulsion system and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, ultraviolet spectrometry, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The results show that the core‐shell nanoparticles of less than 100 nm may be synthesized with PANI as shell formed around a core of nanoparticle. PANI/Ag nanocomposite prepared by this method has better thermal stability, higher conductivity, and electrochemical performance. The maximum conductivity (95.5 S/cm) was obtained when W0 (water‐oil ratio) is 22. Cyclic voltammograms results show that PANI/Ag prepared by this method has a high response current and large capacitance. Polarization results show that Ecorr (174.1 mV) and Icorr (50.6 μA/cm2) are better than the results for PANI and for PANI/Ag prepared by micro‐emulsion method. PANI/Ag nanocomposites prepared by the current method have potential applications in electrode materials, capacitors, conductive adhesives, and anticorrosion materials. POLYM. COMPOS. 37:1064–1071, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
Polyaniline/cobalt oxide (PANI/Co3O4) nanocomposites have been investigated for their sensitivity towards carbon monoxide (CO) gas at room temperature. The Co3O4 nanoparticles were prepared by ultrasound assisted coprecipitation method and then incorporated into the PANI matrix. Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy, powder X‐ray diffraction, and field emission scanning electron microscopy have been used to characterize the nanomaterials. The PANI/Co3O4 nanocomposite sensors were found to be highly selective to CO gas at room temperature. A significantly high response of 0.81 has been obtained for 75 ppm CO concentration with a response time of 40 s. Based on the observations of the sensing study, a mechanism for CO sensing by the nanocomposite has been proposed. Influence of humidity on the sensor response towards CO has also been studied and the results presented. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44115.  相似文献   

9.
A series of FeCo2O4 powders was initially synthesized using a hydrothermal method and subsequently calcined at various temperatures to produce the final product. Pure phase FeCo2O4 powders can only be formed in the temperature range of 950–1050 °C. In this work, we study the cation occupation, cation valence, bond length and bond angle changes of the pure phase FeCo2O4 powders formed in such a narrow temperature range. Octahedral lattice distortion in the pure phase FeCo2O4 samples has been observed. More tetrahedral Fe3+ and octahedral Co2+ are excited and exchanged their sites as the calcination temperature increases from 950 °C to 1000 °C, and part of Co3+ ions are reduced to Co2+ in the sample calcined at 1050 °C. The structure of the sample calcined at 1000 °C is close to that of the ideal FeCo2O4 spinel. Magnetic measurements show that ferrimagnetism and anti-ferromagnetism coexist in the pure phase FeCo2O4 samples. Interaction changes between ferrimagnetism and antiferromagnetism caused by the structural changes of the samples have been studied. Due to the pinning of the local anti-ferromagnetism to ferrimagnetism in the sample, the sample shows a Barkhausen jump below 150 K. As the measurement temperature increases further, the system enters into a reentrant spin glass state.  相似文献   

10.
《Ceramics International》2023,49(7):10411-10419
In this work, FeCo2O4 microflowers (MFs) and microparticles (MPs) were respectively prepared at different temperatures via a wet chemical method, along with a post annealing treatment in air. These MFs and MPs exhibited huge specific surface area and a large number of mesopores. Several electrochemical tests were conducted in a three-electrode configuration. The FeCo2O4 MFs delivered a specific capacity of 301.3C g?1, higher than 253.9C g?1 for FeCo2O4 MPs. A hybrid supercapacitor (HSC) device was assembled with FeCo2O4 as cathode and activated carbon (AC) as anode to investigate the practical applications in electrochemical energy storage. The FeCo2O4 MFs//AC HSC delivered a capacity of 107.2C g?1 at 1 A g?1 and an energy density (Ed) of 25.7 W h kg?1 at 862.6 W kg?1, respectively, while the FeCo2O4 MPs//AC HSC showed an Ed of 23.8 W h kg?1 at the power density (Pd) of 878.9 W kg?1. The two HSCs showed little capacity decay after 3000 cycles at 6 A g?1. The capacity of FeCo2O4 MFs and the obtained Ed of HSC were in a high status among those of transition metal oxides (TMOs)-based electrodes reported earlier. The current synthetic strategy can be used as a reference to the synthesis of other similar electrochemical materials for HSC electrodes.  相似文献   

11.
Polyaniline (PANI) in situ doped with gold nanoparticles (Au/PANI) is synthesized by oxidative polymerization as electrode material for supercapacitor. The morphologies and structure of the obtained products are characterized by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy; and electrochemical behaviors were measured by electrochemical workstation. The results show that the nanocomposites of Au/PANI are fabricated with gold nanoparticles (nano‐Au) dispersed well in PANI bulk; and specific capacitance (SC) and rate ability of Au/PANI are improved compared to the pristine PANI due to the introduction of nano‐Au. With nano‐Au content increasing, SC first increase and then decrease and the maximum SC of Au/PANI nanocomposite is up to 462 F g?1 with the nano‐Au content of 1.64 wt %. Finally, both asymmetric and symmetric supercapacitor devices are assembled, exhibiting high energy densities of 8.95 and 4.17 Wh kg?1, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45309.  相似文献   

12.
Water‐dispersible conducting nanocomposites were prepared by precipitating polyaniline (PANI)/polypyrrole (PPY) in an aqueous suspension of polyacrylonitrile–SiO2 (PAN–SiO2) via K2CrO4–NaAsO2 redox polymerization. Incorporation of PANI and PPY in the composites was confirmed by the FTIR spectrum. Scanning electron microscopic analyses for the PANI–(PAN–SiO2) and PPY–(PAN–SiO2) composites indicated formation of lumpy aggregates with irregular sizes. TEM analyses revealed formation of spherical particles with size ranging between 80 and 150 nm for PANI–(PAN–SiO2) nanocomposite and 75–150 nm for PPY‐(PAN‐SiO2) nanocomposites, respectively. Thermal stabilities of the PANI–(PAN–SiO2) and PPY–(PAN–SiO2) nanocomposites were higher than those of the individual base polymers. Conductivity values of PANI–(PAN–SiO2) nanocomposite (10?3 S cm?1) and PPY–(PAN–SiO2) nanocomposite (10?4 S cm?1) were remarkably improved relative to that for PAN homopolymer (>10?11 S cm?1). Both of these composites produced a permanently stable aqueous suspension when the polymerization was conducted in presence of nanodimensional SiO2 as a particulate dispersant. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
《Ceramics International》2017,43(6):5095-5101
To improve the electrochemical properties of Co3O4 for supercapacitors application, a hierarchical Co3O4@ZnWO4 core/shell nanowire arrays (NWAs) material is designed and synthesized successfully via a facile two-step hydrothermal method followed by the heat treatment. Co3O4@ZnWO4 NWAs exhibits excellent electrochemical performances with areal capacitance of 4.1 F cm−2 (1020.1 F g−1) at a current density of 2 mA cm−2 and extremely good cycling stability (99.7% of the initial capacitance remained even after 3000 cycles). Compared with pure Co3O4 electrodes, the results prove that this unique hierarchical hybrid nanostructure and reasonable assembling of two electrochemical pseudocapacitor materials are more advantageous to enhance the electrochemical performance. Considering these remarkable capacitive behaviors, the hierarchical Co3O4@ZnWO4 core/shell NWAs nanostructure electrode can be revealed promising for high-performance supercapacitors.  相似文献   

14.
Polyaniline nanofibers (PANI‐NFs) web are fabricated by electrospinning and used as electrode materials for supercapacitors. Field‐emission scanning electron microscope micrographs reveal nanofibers web were made up of high aspect ratio (>50) nanofibers of length ~30 μm and average diameter ~200 nm. Their electrochemical performance in aqueous (1M H2SO4 and Na2SO4) and organic (1M LiClO4 in propylene carbonate) electrolytes is compared with PANI powder prepared by in situ chemical oxidative polymerization of aniline. The electrochemical properties of PANI‐NFs web and PANI powder are studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. PANI‐NFs web show higher specific capacitance (~267 F g?1) than chemically synthesized PANI powder (~208 F g?1) in 1M H2SO4. Further, PANI‐NFs web demonstrated very stable and superior performance than its counterpart due to interconnected fibrous morphology facilitating the faster Faradic reaction toward electrolyte and delivered specific capacitance ~230 F g?1 at 1000th cycle. Capacitance retention of PANI‐NFs web (86%) is higher than that observed for PANI powder (48%) indicating the feasibility of electro spun PANI‐NFs web as superior electrode materials for supercapacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
《Polymer Composites》2017,38(5):877-883
Magnetic polyurethane rigid foam nanocomposites were synthesized by incorporation of surface functionalized iron oxide nanoparticles with 3‐aminopropyltriethoxysilane (APTS). Magnetite nanoparticles (MNPs) and Fe3O4@APTS were synthesized via co‐precipitation and sol–gel methods, respectively. The main purpose of the surface modification of MNPs was the formation of hydrogen bond between amino groups of Fe3O4@APTS with the urethane groups to improve magnetic and thermal properties of the nanocomposites. The effect of different amounts of Fe3O4@APTS on the thermal and magnetic behavior of resultant nanocomposite was investigated and the optimum percentage of nanostructure in foam formulation was defined. POLYM. COMPOS., 38:877–883, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
A new method for the fabrication of an electromagnetic nanocomposite based on Fe3O4 and polyaniline (PANI) is offered. The authors focused on improvement of the physical and electromagnetic properties of the nanocomposite using a new synthetic method. Supermagnetic Fe3O4 nanoparticles were synthesized through coprecipitation method. As a chemical modification, the third generation of poly (amidoamine) dendrimer was grafted on the surface of the nanoparticles. PANI was grafted from –NH2 functional groups of dendrimer via in situ polymerization of aniline. Finally, Au nanoparticles were loaded on the nanocomposite and its catalytic activity for reduction reactions was studied.  相似文献   

17.
Polyaniline functionalized reduced graphene oxide (PORGO) is prepared by interfacial polymerization and then vertically oriented polyaniline‐graphene (PANI‐PORGO) nanocomposites based on PORGO are developed successfully by in situ polymerization. The morphology and structure are characterized by field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT‐IR), Raman spectra and X‐ray diffraction (XRD). The electrochemical tests indicate that the specific capacitance of PORGO and PANI‐PORGO is as high as 291 and 369 F/g, respectively, at the current density of 1 A/g. PANI—PORGO nanocomposite exhibits high electrochemical activity and enhanced cycle stability with a capacitance retention of 81.2% after 500 cycles at 10 A/g. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44808.  相似文献   

18.
《Ceramics International》2016,42(7):8120-8127
In this paper, we described a simple two–step method for preparing needle-like CoNi2S4/CNT/graphene nanocomposite with robust connection among its ternary components. The prepared CoNi2S4/CNT/graphene nanocomposite has been thoroughly characterized by spectroscopic (Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy), X-ray diffraction and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy–energy dispersive spectroscopy and transmission electron microscopy) were employed to probe the morphological structures. The electrochemical properties of the as-prepared 3D architectures were investigated with three and two-electrode systems. In addition to its high specific capacitance (710 F g−1 at 20 A g−1), after charging–discharging for 2000 cycles, the electrode still maintained the capacity retention of about 82%. When used as the active electrode material for supercapacitors, the fabricated CoNi2S4–g–CNT nanostructure exhibited excellent specific capacitance and good rate capability, making it a promising candidate for next-generation supercapacitors.  相似文献   

19.
In this study, polyaniline (PANI) and polyaniline/clay nanocomposites were prepared via in situ oxidative polymerization. The morphology of nanocomposites structures was investigated by X-ray diffraction (XRD). The chemical structures of PANI and PANI/clay nanocomposites were examined via Fourier transform infrared (FT-IR) spectroscopy. Polyaniline-based pigments were introduced into epoxy paint and applied on steel substrates. The effect of clay addition and the type of clay cation, including Na+ in natural clay (MMT) and alkyl ammonium ions in organo-modified montmorillonite (OMMT), on the anticorrosion performance of epoxy-based coatings was investigated through electrochemical Tafel test, electrochemical impedance spectroscopy and immersion measurements in NaCl solution. The stability of the adhesion of the neat and modified epoxy coatings to the steel surface was also examined. The results indicated that introduction of PANI/OMMT nanocomposite into epoxy paint results in improved anticorrosion properties in comparison with PANI/MMT and neat PANI.  相似文献   

20.
Mn3O4 nanoparticles (NPs) are decorated with reduced graphene oxide nanosheets (rGO-Mn3O4) through a facile and eco-friendly hydrothermal method. The as-synthesized composite was characterized by XRD, SEM, TEM and Raman spectroscopy. The electrochemical properties of (rGO-Mn3O4) nanocomposite were studied as electrode materials for supercapacitors. The rGO-Mn3O4 nanocomposite exhibit high specific capacitance of 457 Fg?1 at 1.0 A/g in 1 M Na2SO4 aqueous electrolyte. The rGO-Mn3O4 exhibits good capacitance retention by achieving 91.6% of its initial capacitance after 5000 cycles. The excellent electrochemical performance is attributed to the increased electrode conductivity in the presence of graphene network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号