首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高氨氮人工配水和序批式反应器,在限氧(0.2~0.3mg/L)条件下,研究了进水氨氮负荷、游离氨和游离亚硝酸对氨氮转化率、亚硝化率和亚硝氮生成速率的影响及游离氨对氨氧化菌的基质抑制动力学。结果表明,在进水氨氮负荷逐步提升过程中,由于高浓度游离氨的抑制作用及负荷冲击的影响,亚硝化效果易出现波动,且负荷越高,亚硝化性能恢复的时间越长。反应系统最终可达到的氨氮容积负荷为3.60kg/(m3·d),亚硝氮生成速率为2.98kg/(m3·d),亚硝化率始终维持在85%左右。反应体系中较高的游离氨浓度(24.4~85.8mg/L)和低浓度溶解氧是维持亚硝化工艺稳定运行的主要因素。游离氨对氨氧化菌的抑制动力学符合Haldane模型,拟合得到最大氨氧化速率为6.71gN/(gVSS·d),游离氨半饱和常数和抑制常数分别为3.2mg/L和27.8mg/L。  相似文献   

2.
亚硝化-厌氧氨氧化作用机理的研究   总被引:8,自引:0,他引:8  
与传统的生物硝化-反硝化工艺相比,亚硝化-厌氧氨氧化联合工艺在处理低(超低)碳氮比高浓度含氮废水方面有着不可替代的优越性,是上个世纪末生物脱氮领域里的一个突出的创新。在温度为30~40℃和水力停留时间约为1d条件下,ρ(DO)在0.5~2.5mg/L,pH值为7.4~8.3时,能够较好的实现匹配厌氧氨氧化的亚硝化;探讨了亚硝化和厌氧氨氧化在污泥颗粒化技术中的实现可能机理。  相似文献   

3.
部分硝化-厌氧氨氧化工艺可用于高氨氮废水的经济高效处理,部分硝化是实现该工艺启动和稳定运行的前提。研究构建了连续流的内循环接触氧化型膜生物反应器(ICCOMBR),对其部分硝化的启动和稳定运行特性进行了研究。结果表明:以普通絮状活性污泥接种,在30℃、氮负荷0.25kg/(m3·d)、溶解氧(DO)2.0~2.5mg/L条件下,18d内成功启动了系统的部分硝化,氨氮去除率(ARE)和亚硝态氮积累率(NAR)分别达到99.16%和84.55%,容积亚硝化速率可达0.126gNO2-N/(L·d),同时容积硝化速率下降到0.031gNO3-N/(L·d)。系统的亚硝化率与碱度消耗量呈现良好的线性相关性。部分硝化启动完成后,将氨氮负荷降低为0.1kg/(m3·d),部分硝化功能迅速被破坏,通过降低曝气量将DO从2.0~2.5mg/L降低为1.0mg/L,在6d时间内硝化率从71.4%下降到11.1%,ARE和NAR分别达到98.87%和83.65%,部分硝化性能成功恢复。经过57d的运行,系统内的污泥生物量从接种时的1.85gVSS/L增长为3.47gVSS/L。  相似文献   

4.
崔剑虹  李祥  黄勇 《化工进展》2015,34(8):3142-3146
部分亚硝化-厌氧氨氧化联合工艺与传统生物脱氮工艺相比具有一定优势,但该联合工艺是否一定优于传统生物脱氮工艺尚需论证。本文介绍了部分亚硝化-厌氧氨氧化联合工艺的组合形式、特点和处理实际废水的研究进展,从脱氮速率、能耗及碳源的角度将部分亚硝化-厌氧氨氧化联合工艺与传统生物脱氮工艺进行对比分析。指出部分亚硝化-厌氧氨氧化联合工艺具有不需要额外投加有机碳源的优点;部分亚硝化-厌氧氨氧化联合工艺虽然在曝气方面可以节省能耗,但是其中温反应需要一定的热能消耗,综合分析其处理能耗高于传统生物脱氮工艺;同时该联合工艺的整体脱氮速率与传统生物脱氮工艺相比差别不大。据此提出在选择生物脱氮工艺时需要考虑废水的碳氮比,碳氮比高时可以采用传统生物脱氮工艺,碳氮比低时可以考虑使用部分亚硝化-厌氧氨氧化联合工艺。  相似文献   

5.
基于FNA处理污泥实现城市污水部分短程硝化   总被引:5,自引:1,他引:4       下载免费PDF全文
马斌  委燕  王淑莹  陈娅  彭永臻 《化工学报》2015,66(12):5054-5059
为实现城市污水短程硝化厌氧氨氧化生物脱氮,以去除有机物的实际污水为研究对象,考察了游离亚硝酸盐(FNA)处理污泥实现城市污水部分短程硝化的可行性。 结果表明,FNA处理活性污泥后,亚硝酸盐氧化菌(NOB)的亚硝酸盐氧化速率下降程度大于氨氧化菌(AOB)的氨氧化速率,且在0~0.75 mg HNO2-N·L-1范围内随着FNA浓度的增加抑制作用增强。接种实际污水厂活性污泥后,系统亚硝酸盐(NO2--N)积累率仅为1%,即为全程硝化。在控制污泥龄约为15 d的条件下,采用FNA处理污泥可使系统亚硝酸盐积累率增加至90%以上。水力停留时间调至2.5 h时,实现了部分短程硝化,且出水NO2--N/NH4+-N平均值为1.24,可满足厌氧氨氧化脱氮反应的要求。因此采用FNA处理污泥,结合水力停留时间和污泥龄控制可实现城市污水部分短程硝化。  相似文献   

6.
采用SBR反应器,在低DO(<1.0 mg/L)及高氨氮浓度(220 mg/L)下,经过20周期(10 d)的连续运行,亚硝化率达到90%以上并且保持稳定。此后逐步降低氨氮浓度,深入研究6个不同水平下亚硝化效果和游离亚硝酸(FNA)及温度对亚硝化的影响。试验结果表明,高氨氮时,实施限时曝气且低DO、较高游离氨(FA)的联合抑制模式,低氨氮下,采取实时控制策略,避免过度曝气,经过130 d的运行,去除负荷稳定在0.301 kg NH 4+-N/(m3.d),污泥负荷稳定在0.374 kg NH4+-N/(kg MLSS.d),亚硝化率一直在95%以上,成功实现了低氨氮SBR亚硝化的启动。同时发现FNA对AOB的抑制具有可逆性,而缓慢升温对亚硝化效果影响不大。  相似文献   

7.
煤化工废水具有含氨氮浓度较高、水质波动较大的特点,易对其生化处理系统造成冲击而使外排水氨氮超标。通过使用外源硝化菌剂和有机营养剂,可使因生产事故冲击而性能恶化的生化处理系统得到快速恢复。研究表明,连续投加外源菌剂可使硝化细菌在土著微生物中快速建立优势,使用有机营养剂可强化普通异养菌功能,间接促进硝化反应。同时使用外源硝化菌剂和有机营养剂,可使生化系统4 d内恢复正常,而自然恢复则需20 d以上。  相似文献   

8.
悬浮填料强化活性污泥系统硝化功能的试验研究   总被引:2,自引:0,他引:2  
针对现有活性污泥系统存在运行稳定性差与低温对生物硝化功能的影响问题,利用悬浮填料进行了强化活性污泥系统硝化功能的试验研究.研究结果表明,在常温条件下,当系统HRT由16 h缩短到8 h,悬浮填料复合系统氨氮硝化率由98.3%仅下降到93.1%,而对比系统硝化率由97.9%下降到87.3%,复合系统具有较高的负荷能力;在低温条件下(反应温度为7~10℃),复合系统较对比系统氨氮硝化率提高16.6%.悬浮填料与活性污泥结合的生物处理系统不仅提高了系统运行的稳定性,而且解决了低温对系统硝化功能的影响问题.  相似文献   

9.
采用序批式进水对亚硝化菌进行定向富集培养驯化,获得了高浓度亚硝化菌,其氨氮容积去除负荷达0.5 kg/(m<'3>·d)以上.结合悬浮生物滤池工艺,强化生物硝化处理化工类氨氮废水具有适应性强、成本低、硝化效率高的特点.在对苯胺类、抗生素类废水生化出水的强化生物硝化处理试验中,苯胺类废水氨氮去除率达80%,抗生素类废水氨...  相似文献   

10.
为实现氧化铁红高氨氮废水的部分亚硝化-厌氧氨氧化处理,研究采用沸石序批式反应器(ZSBR),以获得高效稳定的部分亚硝化。ZSBR以碳酸钠作为外加碱度,通过调控FA与FNA实现稳定的亚硝化,并通过调节碱度投加比与出水pH控制反应器亚硝化进程。结果表明,启动后的ZSBR亚硝化率≥95%,出水m(NO_2~--N)/m(NH_4~+-N)保持在1.1~1.5,最高亚硝化负荷达到0.72 kg/(m~3·d),实现了AOB的富集与NOB的抑制,其中AOB(Nitrosomoadaceae)的相对丰度达到51.5%,未检测出NOB。  相似文献   

11.
厌氧氨氧化工艺在高氨氮废水处理的研究应用进展   总被引:1,自引:0,他引:1  
厌氧氨氧化(Anammox)具有节省曝气、剩余污泥产量小和无需外加碳源等优点,是极具发展前景的高氨氮废水处理工艺。但厌氧氨氧化菌世代周期长、低细胞产率、随出水流失以及一体式部分亚硝化-厌氧氨氧化系统中氨氧化细菌和厌氧氨氧化菌耦合难点阻碍了其推广应用。本文综述了高氨氮废水处理中厌氧氨氧化反应器构建及其启动、厌氧氨氧化菌富集和活性强化。认为需进一步探讨和研究的内容有:系统中厌氧氨氧化菌生物量停留时间的增强;新型填料的开发;生物膜系统中亚硝酸盐氧化细菌的有效清除;高氨氮废水的预处理;厌氧氨氧化的低温启动运行。  相似文献   

12.
游离氨对高浓度含氮废水生物亚硝化的影响   总被引:2,自引:0,他引:2  
高浓度含氮废水可以建立稳定的生物亚硝化系统,从开始启动到达到稳定亚硝化状态需25d时间,进水NH3-N的质量浓度为800~900mg/L时,出水NH3-N、NO2--N、NO3--N的质量浓度分别为380、335、100mg/L,系统NH3-N的降解率为55%~60%、亚硝化率为80%。启动阶段,系统中亚硝酸菌的生长优势与游离氨的抑制作用并存。随着启动阶段结束及稳定亚硝化系统建立,硝酸菌、亚硝酸菌适应了游离氨的毒害和抑制作用,亚硝酸菌赢得了生长上的优势地位,表现为较高的亚硝化率。NH3-N的氧化活性不受系统生物量影响,以游离氨体积浓度直接衡量其所受的抑制性,而NO2--N的氧化活性与系统生物量有关,以游离氨污泥负荷为基础衡量。维持游离氨污泥负荷小于0.1是取得良好亚硝化效果和氨氮降解率的前提。  相似文献   

13.
巩有奎  彭永臻 《水处理技术》2020,46(8):110-115,120
以生活污水为研究对象,利用序批式活性污泥法反应器(SBR),考察了不同温度下短程生物脱氮过程污染物去除和N_2O释放特性。结果表明,利用pH在线控制措施,在pH曲线"氨谷"点及时停止硝化过程,能够在低温下维持稳定的短程硝化过程。不同温度下,系统异养菌COD去除效率无明显差别。随温度降低,NH_4~+去除率由95%以上降至21.8%±2.1%,N_2O产率由6.37%±0.60%降至0.66%±0.16%。N_2O主要产生于硝化过程。中温(≥20℃)和低温(20℃)下,氨氧化菌(AOB)氧化NH_4~+的温度常数θ分别为1.056和1.140。氨氧化速率(AOR)越大,最高氧化亚氮产生速率(N_2OR)出现时间越早。温度升高,AOR增加,提高了NO_2-积累速率,促进了以N_2O作为终产物的AOB好氧反硝化过程。  相似文献   

14.
金羽  李建政  任南琪  刘淑丽 《化工学报》2013,64(9):3367-3372
为提高北方地区冬季污水生物处理系统的脱氮效果,利用序批式反应器(SBR)和选择性培养基在(14±1)℃下驯化并富集耐冷氨氧化功能菌群,并采用软性填料进行固定,对(14±1)℃运行的A2/O系统好氧段进行生物强化。结果表明,连续运行5个周期后,SBR中的活性污泥逐渐演替为氨氧化功能菌群,在进水NH3-N为205~236 mg·L-1时,SBR的NH3-N去除率可达79.5%;将组合式纤维填料置于SBR中并继续运行5个周期,可将氨氧化功能菌群以生物膜的形式固定于填料表面。以固定化氨氧化功能菌群对A2/O系统进行生物强化,在投加量为3.24%(污泥干重)的条件下,A2/O系统的氨氮平均去除率由投加前的65%提高到78%,COD和总氮去除率也有明显提高。在生物强化后的持续运行中,A2/O系统的氨氮去除效能有缓慢下降趋势,其长期强化效果有待进一步探讨。  相似文献   

15.
以印染丝光高氨氮含量废水为研究对象,利用投加天然沸石粉的序批式活性污泥法反应器(ZSBR)实现高氨氮废水的亚硝化。结果表明,通过沸石对氨氮的吸附-解吸作用可以维持反应器内适宜的游离氨(FA)含量,从而实现ZSBR亚硝化的快速启动。系统在受到高含量FA的抑制作用后,通过控制进水氮负荷调控系统内较低的FA来恢复ZSBR的亚硝化。高通量测序分析表明,ZSBR内氨氧化菌(AOB)得到了快速增殖,而硝化菌(NOB)受到抑制被淘洗。对于高氨氮的丝光废水,通过改变充水比(单周期内进水体积与ZSBR总有效体积之比)控制进水氮负荷在合理的范围内,系统依然可以稳定运行,且最高氨氮转化去除负荷可达1.12 kg/(m~3·d)。  相似文献   

16.
浙江大学开发的短程硝化-厌氧氨氧化技术,适用于高浓度含氨废水的脱氮处理。经实际应用检验,该技术具有脱氮效果好、投资省、运行成本低和剩余污泥产量少、无需外加碳源等优点,值得企业关注。该技术采用高效生物硝化反应器,把一部分废水中的氨氮转化为亚硝氮,用作厌氧氨氧化的电子受体;把另一部分废水中的氨氮直接用作  相似文献   

17.
以固定化硝化菌包埋载体为主要材料,采用人工配置氨氮水样,考察了不同活化时间、温度和载体投加比条件下,固定化硝化菌包埋载体对氨氮的去除效果及其与普通填料的效果比较,并对实际生活污水的氨氮去除率进行了测定。结果表明,固定化硝化菌包埋载体的最佳活化时间为15 d,并且活化稳定后在低温下(<10℃)仍具有较高的生物活性;在某个温度下,固定化硝化菌包埋载体处理废水的投加量只与进水氨氮浓度有关;同样的投加比条件下,包埋载体的去除率比普通填料高近40%;包埋载体处理生活污水,25℃和20℃时氨氮在6 h内基本降解完全,去除率均接近100%。  相似文献   

18.
作为低碳节能的生物脱氮工艺,厌氧氨氧化引进国内已有十余年的历史,已有多家食品加工龙头企业从国外引进了十多套厌氧氨氧化脱氮系统。这些系统大部分运行良好,但也有少数脱氮效果不稳定,未能达到预期效果。以典型食品加工废水厌氧氨氧化处理系统为例,分析确定了该脱氮系统失效原因在于进水氨氮低于系统设计要求,难以形成稳定的亚硝氮积累,破坏了一体式部分亚硝化-厌氧氨氧化(PN-A)系统的稳定高效脱氮,导致系统出水总氮去除率下降,同时出水硝氮明显升高。为解决此难题,采用高效亚硝化反应器促进食品加工废水快速稳定亚硝化,一周后平均亚硝化率可达92.92%,平均出水亚硝氮为84.09 mg/L,平均亚硝化产率约为0.41 kg/(m3·d),保障了厌氧氨氧化系统亚硝氮基质供应,并在小试Anammox脱氮系统实现总氮去除率达84.52%,出水总氮低于15 mg/L,平均总氮去除负荷0.56 kg/(m3·d)。研究结果可为解决当前国内食品加工厌氧氨氧化脱氮系统失效问题提供新的思路。  相似文献   

19.
限时曝气条件下,采用SBR反应器处理模拟氨氮废水,通过pH控制实现了SBR系统快速亚硝化启动,并对不同pH下氨氧化过程进行了研究,考察了pH对氨氧化过程中DO变化规律、游离氨及氨氧化速率的影响。结果表明,在pH为7.59~8.12时,可实现氨氧化菌和亚硝态氮快速富集和积累,亚硝态氮积累率可达95%以上;通过pH调节可控制进水游离氨(FA)浓度及氨氧化过程中DO需求,进而影响选择性亚硝化过程。  相似文献   

20.
针对低温条件下人工湿地系统中微生物活性下降,导致处理效果明显下降的问题,进行了低温人工湿地生物强化试验研究。在低温4℃条件下进行复合菌剂制备并投加入潜流人工湿地中进行生物强化。结果表明:脱氮菌剂构建实验中,复配比例为氨化菌∶亚硝化菌∶硝化菌∶反硝化菌=2∶3∶1∶2时氨氮及总氮降解效率最佳,去除率分别为16.59%和17.86%。复合菌剂构建实验中,除碳菌和脱氮菌剂体积比为4∶1氨氮、总氮的去除率两方面来看效果最佳,去除率分别为21.34%,18.59%。应用于潜流低温人工湿地模拟装置中,可使氨氮去除率提高5.78%,总氮去除率提高7.69%,并且总氮出水达到一级A标准。但投加10 d后各指标出水浓度均上升,因此需以10 d为周期反复投加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号