首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
文章研究了锂皂石对聚合物/表面活性剂复合驱采出水乳化稳定性的影响,并通过油水界面张力和zeta电位分析了体系稳定的原因。结果表明:在驱油剂的浓度固定时,随着锂皂石质量浓度的增大,zeta电位和界面张力逐渐降低,采出水稳定性逐渐增强;当浓度达到150~200 mg/L时,体系最稳定,继续增大锂皂石的浓度,zeta电位基本无变化,而界面张力增加,此时采出水稳定性减弱。在锂皂石浓度一定时,随表面活性剂浓度增加,zeta电位和界面张力均减小,采出水稳定性增强;随聚合物浓度增大,采出水稳定性先增强后减弱。  相似文献   

2.
通过室内实验方法研究了钠蒙脱土颗粒对聚驱采油污水油水分离性能和油水界面性质的影响。采用界面张力仪和Zeta电位仪研究了钠蒙脱土颗粒对聚驱采油污水中油滴Zeta电位、油水界面张力和界面扩张黏弹模量的影响。在光学显微镜下,观察钠蒙脱土颗粒在油滴表面的吸附状态。结果表明,当钠蒙脱土颗粒质量浓度低于200mg/L时,随其质量浓度增大、Zeta电位下降,、界面张力降低、黏弹模量提高,采油污水中出现稳定液滴型(oil-mineral aggregate,OMA)结构,此时钠蒙脱土颗粒对聚驱采油污水稳定性影响比较显著, 采油污水处于比较稳定的阶段。当其质量浓度大于250mg/L后,Zeta电位基本不再下降,而界面张力略有提高,黏弹模量也有增大,颗粒油滴形成大的聚集体结构,油滴更容易发生聚并,聚驱采油污水稳定性变差,从而更易于处理。  相似文献   

3.
以成分相对简单的轻质油(V(石油醚):V(苯)=9:1)作为模拟油取代成分复杂的原油配制模拟采出水,详细探究了驱油剂影响聚合物/表面活性剂二元复合驱采出水乳化稳定性的机理。采用超低界面张力仪、Zeta电位分析仪和界面流变仪对油水界面张力、油滴表面Zeta电位和油水界面流变进行测定,研究了部分水解聚丙烯酰胺(HPAM,聚合物)、石油磺酸盐(WPS,表面活性剂)和矿化度对模拟采出水油水分离性能的影响。研究结果表明:WPS能够降低油水界面张力,使模拟采出水更加稳定。HPAM能够增加模拟采出水体相黏度,但对其最终乳化稳定性影响较小。矿化度增加显著增强了模拟采出水乳化稳定性,从而为进一步加深对采出水乳化稳定性的研究提供借鉴。  相似文献   

4.
研究了驱油剂对模拟三元复合驱采出水油水分离性能、油滴Zeta电位、界面张力、流变性及油滴粒径的影响。HPAM提高体相粘度和油滴Zeta电位,促进油滴聚并,对界面张力和粘弹性模量影响不大,随着其浓度的提高,模拟采出水的稳定性先减小后增强;表面活性剂提高Zeta电位,减小界面张力和粘弹性模量,并阻碍油滴聚并,随着其含量的增加,稳定性显著增强;碱提高Zeta电位,减小界面张力和粘弹性模量,随着其含量的增加,稳定性先增强后减弱。  相似文献   

5.
采用表面张力仪、界面黏弹性仪和Zeta电位仪,研究了大庆油田三元复合驱采出水中的固体颗粒(纳米SiO2、钠基蒙脱土)与驱油剂(碱、表面活性剂、聚合物)作用对油水界面性质及乳状液稳定性的影响。结果表明,固体颗粒与NaO H作用使得油滴表面Zeta电位绝对值增大;固体颗粒与烷基苯磺酸盐作用,油水界面张力增大,水相固体颗粒使得油水界面剪切黏度减小;固体颗粒与HPAM 作用使得油滴表面Zeta电位绝对值明显增大。固体颗粒与碱作用时,其低质量浓度不利于O/W乳状液的稳定,而高质量浓度(800 m g/L )则有利于O/W乳状液的稳定;固体颗粒与烷基苯磺酸盐作用使得O/W乳状液稳定性增加,而与H PA M作用则减小O/W乳状液的稳定性。  相似文献   

6.
采出液的稳定性及处理效果与油水界面性质有关,三元复合驱弱碱与原油作用时间对油水界面性质及采出液稳定性有重要影响.以大庆原油模拟油、模拟水和Na2CO3溶液为研究对象,利用界面张力仪、表面黏弹性仪、Zeta电位分析仪及浊度仪,研究大庆油田三元复合驱弱碱与原油长期作用后对油水界面性质及乳状液稳定性的影响.结果表明:Na2CO3溶液与模拟油长时间反应后,分离得到的水相与模拟油间的界面张力降低,油珠表面的Zeta电位绝对值增加,油水界面剪切黏度变化不明显,水相与模拟油乳化后所形成的乳状液的稳定性增强.Na2CO3溶液与模拟油反应1d后,分离得到的油相与模拟水间的界面张力、Zeta电位及乳状液稳定性大于未反应的模拟油的;Na2CO3溶液与模拟油反应10d后,分离得到的油相与模拟水间的界面张力小于反应1d后分离所得的油相的,Zeta电位及乳状液稳定性大于反应1d后分离所得的油相的.该研究结果为三元复合驱机理研究提供参考.  相似文献   

7.
用界面张力仪、表面粘弹性仪和Zeta 电位仪测定了胜利孤东原油模拟油与含预交联聚合物凝胶颗粒 溶液间的界面特性, 并研究了预交联聚合物凝胶颗粒浓度对这些界面特性及乳状液稳定性的影响。结果表明, 去离 子水中加入预交联聚合物凝胶颗粒后, 去离子水及模拟水与原油模拟油间的界面张力和界面剪切粘度及油滴表面 的Ze ta 电位绝对值均增大, 原油与预交联聚合物凝胶颗粒溶液间所形成的W/ O 型和O/W 型乳状液稳定性均随聚 合物凝胶颗粒浓度增加而增强。  相似文献   

8.
用界面剪切黏度仪和Zeta电位仪研究了固体颗粒对油水界面性质的影响.结果表明随着固体颗粒浓度的增加和剪切时间的延长,油水界面剪切黏度均增大.  相似文献   

9.
选用了一系列具有不同阳离子度和分子质量的阳离子功能性聚合物,分别测定了其与孤东原油模拟油的油水界面张力、Zeta电位、O/W型乳状液的稳定性。研究发现,当阳离子功能性聚合物的分子质量相近时,阳离子度越大,其对O/W型乳状液的破乳效果越好;在所研究质量浓度范围内,阳离子功能性聚合物质量浓度较高时,其破乳效果较好。油水界面张力和Zeta电位结果显示,阳离子功能性聚合物对O/W乳状液的破乳机理为界面电中和机理。加入阳离子聚合物后,能中和油珠表面电荷,促使油珠聚结,且高分子聚合物有"桥联"作用,加快油珠聚结,从而实现O/W乳状液的破乳。  相似文献   

10.
为了给强碱三元复合驱技术决策提供依据,以喇嘛甸油田取样井的采出液为研究对象,分析了强碱三元复合驱采出液药剂加量与黏度和界面张力间的关系,探索了强碱三元复合体系段塞黏度对采出液药剂加量和色谱分离程度的影响。结果表明,随取样井储层渗透率增加,采出液中碱、表面活性剂质量分数和聚合物质量浓度呈现“先升后降”变化趋势。随采出液聚合物质量浓度增加,黏度增加,界面张力升高。随采出液碱和表面活性剂质量分数增加,黏度减小,界面张力降低。分析表明,强碱三元复合驱过程中存在比较严重色谱分离现象。通过提高三元复合体系黏度可以减弱色谱分离现象,进而改善三元复合驱增油效果。  相似文献   

11.
选用两种不同种类的降黏剂-水溶性降黏剂和油溶性降黏剂,分别测定其与塔河稠油采出液的油水界面张力、界面剪切黏度、油水乳状液的稳定性以及降黏效果。研究发现,水溶性降黏剂可以显著降低油水界面张力,油溶性降黏剂则主要影响界面剪切黏度。水溶性降黏剂利于形成油水乳状液,油溶性降黏剂可以提高乳状液的稳定性,并达到较好的降黏效果。此外,将两种降黏剂进行复配,在一定条件下复配体系的降黏效果及乳状液稳定性相对单一体系都显著提高。  相似文献   

12.
超低界面张力驱油用表面活性剂的研究及应用   总被引:1,自引:0,他引:1  
以十二烷基甜菜碱和脂肪酸酰胺两种表面活性剂为主要原料,研发了一种高活性、耐温、抗盐、超低界面张力的表面活性剂CS-6.实验结果表明:在40℃~80℃、矿化度10 000~100 000mg/L、表面活性剂溶液浓度0.3%~0.6%的情况下,油水间的界面张力均可达10-4mN/m数量级.同时该表面活性剂体系具有较好的乳化能力,且抗吸附性强,驱替实验效果良好.  相似文献   

13.
应用滴体积法测定了5种原油/水的界面张力,考察了水相盐含量、pH值及温度对油/水界面张力的影响.结果表明,不同原油的油水界面张力差别较大;原油/水界面张力随温度、水相NaC1浓度、pH值的变化呈现出一定的规律性.  相似文献   

14.
以对含聚污水进行深度处理、满足回注为思路,数值模拟研究含聚污水经普通处理后进一步开展深度过滤处理的可行性及潜力。通过分析比较过滤流场的油珠及悬浮物粒子聚集分布、过滤出水水质含油与悬浮物质量浓度变化,以及除油率和悬浮物去除率的定量,构建并优化了适合于含聚污水压力式深度过滤的工艺模式。结果表明,“双层级配滤料+三层级配滤料”两级深度过滤工艺模式可依靠水力、界面效应实现进一步截污,再现出稳定的过滤性能,综合除油率和悬浮物去除率分别达到87.78%和87.11%,滤后水质的含油、悬浮物指标均可控制在深度处理水源要求的5 mg/L以内,是含聚污水深度处理的一种潜在过滤工艺模式,为有效应对油田化学驱三次采油开发中的水质问题提供了依据。  相似文献   

15.
三元复合驱采出液中离子矿化度较高,悬浮颗粒半径较大,原油乳化严重,形成了O/W型乳状液,体系黏度较大,成分较复杂,使三元采出液这种复杂的污水体系,在进行油水分离时,很难靠常规沉降处理方法达到较好的分离效果。通过室内沉降实验,研究三元复合驱采出液体系在不同沉降时间、沉降温度条件下的沉降效果,明确三元和聚合物驱体系混掺后沉降效果及技术界限。实验结果表明,三元采出液中混掺聚驱采出液有助于降低三元采出液中油水的分离难度,从混掺污水的水质特性分析,将三元采出液与聚驱采出液混掺,不但可以降低污水处理难度,而且更加有利于现有油田三元采出水处理工艺的稳定运行,且三元采出液与聚驱采出液的最佳混掺比1∶3,最佳混掺沉降时间界限为8 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号