首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn_(2-x)Ti_xO_4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.  相似文献   

2.
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.  相似文献   

3.
A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple. The polymer membrane has rich micro-porous structure on both sides and exhibits 280% uptake of electrolyte solution. The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m. The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate. After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V. The discharge capacities of 0.5 and 1.0 current rates are 96% and 93% of that of 0.1 current rate, respectively.  相似文献   

4.
A large capacity storing solar energy as latent heat in a close-cycle is essentially important for solar thermal fuels. This paper presents a solar thermal molecule model of a photo-isomerizable azobenzene(Azo) molecule covalently bound to graphene. The storage capacity of the Azo depending on isomerization enthalpy(ΔH) is calculated based on density functional theory. The result indicates that the ΔH of Azo molecules on the graphene can be tuned by electronic interaction, steric hindrance and molecular hydrogen bonds(H-bonds). Azo with the withdrawing group on the ortho-position of the free benzene shows a relatively high ΔH due to resonance effect. Moreover, the H-bonds on the trans-isomer largely increase ΔH because they stabilize the trans-isomer at a low energy. 2-hydroxy-4-carboxyl-2′,6′,-dimethylamino-Azo/graphene shows the maximum ΔH up to 1.871 e V(107.14 Wh kg~(-1)), which is 125.4% higher than Azo without functional groups. The Azo/graphene model can be used for developing high-density solar thermal storage materials by controlling molecular interaction.  相似文献   

5.
A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.  相似文献   

6.
Antimony doped tin-oxide powders were prepared by controlled precipitation. Surface compositions were determined by X-ray photoelectron spectroscopy (XPS). The results indicate that enrichment of dopant at the surface of nanoparticles depends on total doping concentration and annealing temperature. Doped antimony shows the tendency to diffuse to surface when annealing at high temperatures. But same amount of Sb atoms are retained on the surface for powders annealing at different temperatures. The higher enrichment at higher temperature is caused by the decreasing of surface areas. Variation of the conductivities of SnO2 powders is also discussed.  相似文献   

7.
Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption--desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO/and WO3 nanoparticles of uniform size 10-30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g^-1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.  相似文献   

8.
A system is developed to improve the series battery packs uniformities and charging protection and the implementation of battery equalization charging and protection system is also introduced. The functions of equalization charging and overcharging protection are analyzed and the control model of series battery packs equalization charging is setup. The diverting-current and feedback bus voltage are measured during the series Li-ion battery packs equalization charging experiment. The field operation on Electric luxury transit bus BFC6100EV shows that the system betters the battery series charging uniformities and overcharging protection, improves the battery performance and extends the battery life.  相似文献   

9.
Ionic liquid modified silica nanoparticles were synthesized using a simple silane chemistry,followed by substitution reaction. The phenol adsorption performance was tested using temperature programmed desorption technique. The experimental results reveal that the introduction of ionic liquids on the surface of silica nanoparticles can improve the adsorption capacity of phenol compared to the pure silica nanoparticles.The initial adsorption capacity reaches 0.312 mmol·g-1 at 25 ℃ under total pressure of 0.2 bar and it decreases slightly in the following adsorption-desorption cycles. The results demonstrate that introduction of ionic liquids can improve the phenol adsorption capacity and the simple material preparation process is feasible for industrial applications.  相似文献   

10.
Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a Cu/Cr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.  相似文献   

11.
用SnCl4和葡萄糖的水热反应合成SnO2/碳质复合材料,然后在氮气气氛中热处理使SnO2被碳热还原为Sn纳米粒子,制备得到Sn/C纳米复合材料.用X-射线衍射(XRD), 透射电镜(TEM)和X-射线电子散射能谱(EDX)对样品进行表征.结果显示Sn纳米粒子具有球形的形貌,并均匀地分散在无定形的碳材料中.对于Sn质量分数58.5%和32.3%的Sn/C复合材料,Sn纳米粒子的平均粒径分别为51和20 nm.电化学测试结果显示,Sn/C复合材料具有高的电化学贮锂可逆容量和良好的循环稳定性.讨论了Sn/C纳米复合材料的形成机理及其循环稳定性能改善的原因.  相似文献   

12.
通过两步水热法合成了可用作锂离子电池负极材料的二氧化锡-石墨烯-炭(SnO2-Gn-C)三元复合物.采用X射线粉末衍射(XRD)、透射电镜(TEM)和电化学测试研究了SnO2-Gn-C复合物的晶型结构、形貌和电化学性能,并考察了反应温度和Sn/Gn物质的量比对复合物电化学性能的影响.实验结果显示,SnO2-Gn-C复合物在200mA· g-1电流密度下初始放电比容量达到1 225mA·h·g-1,50次充放电循环后比容量仍有约229mA.h·g-1.SnO2-Gn-C良好的电化学性能主要归结于大比表面积的石墨烯对SnO2纳米粒子的良好分散作用、石墨烯和炭的高导电性以及炭包覆后的复合物充放电时体积效应的显著减小.  相似文献   

13.
为了改善SnO2-MoO3-x纳米复合材料在锂离子电池负极中的性能,通过水热法制得SnO2-MoO3-x/CNTs纳米复合材料,并研究CNTs的含量对纳米复合材料性能的影响;通过XRD与SEM对所得纳米复合材料进行表征,将材料组装为扣式电池,利用电化学工作站、蓝电电池测试系统等进行电化学性能测试。结果表明:CNTs的加入可以有效减小SnO2-MoO3-x纳米复合材料表面团聚现象,对纳米复合材料的电化学性能方面有明显的改善;当CNTs的加入质量分数为15%时,SnO2-MoO3-x/CNTs纳米复合材料的电化学性能最好,在100圈循环后仍然具有532.6 mA·h/g的放电比容量,库伦效率高达99.0%。  相似文献   

14.
用四氯化锡(SnCl4)和L-半胱氨酸(L-Cys)的水热反应合成纳米片状的SnS2,用X-射线衍射(XRD)和透射电镜(TEM)对其微观结构和形貌进行表征.讨论了SnCl4与L-Cys物质的量比对产物及其形貌的影响.结果显示,当SnCl4与L-Cys的物质的量比为1∶2,得到的产物是SnS2和SnO2纳米粒子的混合物;当SnCl4与L-Cys的物质的量比为1∶4~1∶6,得到的产物是纳米片状的SnS2.电化学测试结果显示,纳米片状SnS2作为锂离子电池负极材料具有较高的可逆容量和良好的循环稳定性,其初始容量为480 mAh/g,80次循环后其容量为407 mAh/g.  相似文献   

15.
石墨烯具有独特的纳米结构和一系列极具吸引力的特性,成为新型纳米复合材料的理想载体,如纳米复合材料分散的基体.提出了一种以石墨,苯胺,四氯化锡为原料制备石墨烯/二氧化锡/聚苯胺的新方法.通过X-射线衍射,红外光谱,透射电子显微镜,扫描电子显微镜以及紫外-可见光谱对合成的材料进行表征.结果表明:二氧化锡纳米粒子原位吸附在石墨烯的表面,有效地避免了石墨烯片的堆叠,聚苯胺加入后可大大提高二氧化锡的电化学性质.  相似文献   

16.
采用特殊液相沉淀法制备了CuO/SnO2复合纳米粉体,通过XRD和TEM对其进行表征;用它做催化剂在日光作用下对亚甲基蓝溶液进行了光催化实验。结果表明:本实验条件下制备的CuO/SnO2复合纳米粉体分散性好,粒径分布范围窄,并且具有良好的光催化性能。其中CuO质量分数为70%的CuO/SnO2复合纳米粉体在400℃时焙烧时间30 min的光催化效果最佳,质量浓度为10 mg/L,亚甲基蓝溶液的降解率最佳,60 min时可高达98.7%。  相似文献   

17.
用So l-Ge l 法制备了纳米级的CuO -SnO2 气敏粉体, 所得粉体制作的气敏元件有较好的气敏性能。在不同的加热电压下进行实验研究, 对不用浓度配比制成的气敏元件进行气敏性能测试。通过对所得粉体的表征可知, 用So l-Gel 法制备出的CuO-SnO2 气敏粉体是纳米级的, 比表面积大, 活性好, 其最佳热处理温度为650 ℃, 测试结果得出CuO 摩尔分数为4 %的CuO-SnO2 气敏元件有较好的灵敏度和较高的选择性, 并且对CO2 的灵敏度和选择性比较突出。  相似文献   

18.
为了研发高性能的锂离子电池负极材料,采用水热法合成了Bi2S3-MoS2/石墨烯复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、热重分析(TGA)和X-射线光电子能谱(XPS)对复合材料进行表征,讨论复合材料的微观结构对电化学储锂性能的影响. 特别是,当Bi与Mo的物质的量之比为1∶4时,Bi2S3-MoS2/石墨烯的电化学储锂可逆比容量可以达到1 140 mA·h/g,并具有稳定的循环性能. 当充放电电流密度为1 000 mA/g时,其高倍率特性为886 mA·h/g. Bi2S3-MoS2/石墨烯复合材料优异的电化学储锂性能主要由于MoS2具有更少的层数和较多的边缘以及Bi2S3纳米粒子具有更均匀的粒径,并能很好地分散在石墨烯表面,增强了复合材料容纳锂离子的能力,改善了储锂电极过程的动力学性能.  相似文献   

19.
为解决7.2V锂离子电池和6V镍氢/镍镉电池的智能高效充电,设计了一种通用型智能充电器.它基于微控制器的电路设计使得电池充电智能化,同时采用片内集成的高分辨率16位单积分A/D转换器和16位脉宽调制信号输出定时器(PWM),这就保证了充电器的设计具有很高的系统精度.充电器的软件体系结构采用模块化的程序设计,5个子程序模块对应5种相应的充电操作模式:自适应充电模式、锂离子电池充电模式、镍氢/镍镉电池充电模式、放电模式、错误处理模式.  相似文献   

20.
在比较分析各类蓄电池系统模型的基础上,提出一种基于传质现象的锂电池简化机理模型。采用COMSOL v3.5软件针对型号为IHR 18650的锰酸锂离子电池进行仿真研究,并通过放电实验对简化模型的有效性进行验证。结果表明,提出的简化模型能够较为准确地描述锂离子电池的外部特性。文中进一步对不同充/放电电流条件下的锂离子浓度和电势分布情况、设计参数对锂电池性能的影响以及锂离子浓度和电势分布随电池充/放过程的变化情况进行了仿真分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号