首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
钢-混凝土组合梁疲劳性能研究进展   总被引:1,自引:1,他引:0  
钢-混凝土组合梁广泛应用于桥梁结构,由车辆等活荷载引起的疲劳问题日益突出,但国内对钢-混凝土组合梁疲劳性能的研究并不充分,规范中相关的疲劳设计条款有待完善。疲劳试验是研究钢-混凝土组合梁疲劳性能的主要途径之一,而其耗时长、费用高的特点决定了无法进行大量的试验研究。因此,对现有研究成果进行汇总分析具有重要的意义。本文通过整理、分析国内外的研究文献和设计规范,对钢-混凝土组合梁的疲劳性能、疲劳设计方法等进行了探讨,相关内容可以为组合梁的疲劳设计提供参考。  相似文献   

2.
根据钢-混凝土组合梁的特点,介绍了钢一混凝土组合梁受力时采用有限元分析的原理,推导了剪力连接件的单元刚度矩阵表达式,建立了连接件的非线性有限元模型.采用大型有限元软件ANSYS作为仿真分析工具,对均布荷载作用下的钢-混凝土简支组合梁在不同剪力连接程度下的应力、变形和滑移进行了分析.分析结果可以指导实际工程中对组合梁设计的连接程度的选择.  相似文献   

3.
钢-混凝土组合梁能够充分发挥钢梁的抗拉强度和混凝土的抗压性能,是一种性能优越的组合结构。根据组合梁的特点,选取适合的单元类型及本构关系,探讨其网格划分和加载方式,建立了一套适用于组合梁的有限元建模方法。模拟已有试验,对比分析荷载-挠度曲线,两者计算结果吻合良好,验证了所建有限元模型是可靠的。然后利用有限元模型对组合梁的滑移特点进行了分析,得出了一些有益的结论:极限状态下,最大滑移并不在梁端,而在距梁端约200 mm的位置,说明这个部位分配的剪力最大,并且抗剪连接度越高,这种情况越明显;抗剪连接度较低时,组合梁混凝土强度等级对滑移影响不大,抗剪连接度较高时,相同荷载作用下,组合梁混凝土强度等级越高,界面产生的滑移越大。可以根据组合梁的这些特点,合理布置抗剪栓钉,减小界面滑移,提高组合梁的承载力。  相似文献   

4.
预应力钢-混凝土组合梁非线性有限元解法   总被引:2,自引:1,他引:1  
为了研究预应力钢-混凝土组合梁受力全过程的力学性能,编制了预应力组合梁非线性有限元程序,考虑了材料非线性及几何非线性,模拟了连接件传力机理,能较精确地预见和分析加载受力过程中预应力增量、界面相对滑移、组合梁极限承载力等受力性能,并进行了算例验证,结果表明,该有限元程序正确。  相似文献   

5.
为探讨连接件对钢-混凝土组合梁在静载作用下的抗弯性能的影响,对四根不同剪力连接的组合梁进行试验,观察试件的受力性能、破坏形式,分析试件的荷载-位移曲线、荷载-应变曲线、荷载-滑移曲线等;并采用组合梁单元模型,对钢-混凝土组合梁进行了有限元分析。通过试验和数值分析可以发现,组合梁具有良好的延性,连接件的连接程度对组合梁的变形、承载力具有较大的影响,数值计算与试验结果较吻合。  相似文献   

6.
基于有限单元法的钢-混凝土组合梁截面优化设计   总被引:4,自引:0,他引:4  
给出了钢-混凝土组合梁截面计算机辅助优化设计的有效方法,以有限元结构分析和优化算法相结合为手段,提出了一种符合实际情况的钢-混凝土组合梁的剪力连接模式,建立钢-混凝土简支组合梁有限元分析模型、优化参数模型,优化数学模型,用ANSYS的参数化设计语言编制了分析文件和优化控制文件,经计算获得钢-混凝土组合梁最优截面形式.该方法的优化效果显著,并且效率高,可广泛应用于钢-混凝土组合梁截面优化设计工程.  相似文献   

7.
为了研究钢混凝土组合梁-钢管混凝土柱节点的力学性能和半刚性特性,制作了4个比例为1∶3的节点模型进行试验,借助有限元分析软件ABAQUS建立了节点的有限元模型进行数值计算,分别进行了试验结果与数值计算的相应测点的应变、位移等结果的对比分析.通过试验与数值计算彼此校核,得到了与试验相符的有限元模型.在此模型的基础上,建立了该组合梁柱节点只含几何参数的相对弯矩-转角曲线模型.  相似文献   

8.
为了研究部分抗剪连接钢-预制混凝土板组合梁的疲劳性能,对两根组合梁试件分别开展了静力和疲劳加载试验。在疲劳试验中,跨中钢梁母材在200 MPa应力幅作用下经历了95.5万次等幅疲劳加载后最终发生了疲劳断裂;组合梁试件在疲劳荷载作用下产生了明显的刚度退化,在经历50万次的疲劳加载后,由疲劳损伤引起的组合梁跨中附加挠度约为初始挠度的45.1%。结果表明:焊缝缺陷是焊接钢梁发生疲劳破坏的重要诱因;部分抗剪连接组合梁在疲劳荷载作用下的附加变形计算应予以重视;通过合理设计,部分抗剪连接钢-预制混凝土板组合梁具有应用于桥梁工程的可行性。  相似文献   

9.
钢-混凝土组合梁截面刚度的分析   总被引:3,自引:0,他引:3  
建立了考虑钢梁与混凝土板之间的滑移效应以及截面的塑性发展对钢-混凝土组合梁截面刚度影响的组合梁刚度计算模型,进行了理论推导.应用偏心板单元和偏心连接单元编制了钢-混凝土组合梁非线性有限元分析程序NACB2.0,利用NACB2.0及ANSYS进行了组合梁非线性分析,计算了组合梁在各级荷载下的挠度值,确定了组合梁的弹性截面刚度和塑性截面刚度,得出了截面刚度计算公式,并与规范中的换算截面法和现有的试验结果进行了对比.结果表明:滑移效应及塑性发展在一定程度上使组合梁的截面刚度比按照换算截面得到的刚度低,不可忽略;理论分析和推导与试验结果吻合很好.  相似文献   

10.
以简化的Varma模型作为钢材的循环本构关系模型,建立了2类钢管混凝土柱与组合梁连接节点——梁钢筋贯通钢管节点和梁钢筋与上加强环焊接连接节点的三维非线性分析模型,并采用有限元软件ANSYS对其在低周反复荷载作用下的滞回性能进行了非线性分析。结果表明:由有限元模型得到的低周反复荷载作用下的滞回曲线及骨架曲线与试验所得的结果吻合较好,但在屈服荷载后差异较大;如能恰当地选择材料的本构关系、计算模型和破坏准则,则能够采用有限元模型准确地预测上述2类节点的弹塑性行为和整体抗震性能,并用于节点滞回性能的非线性参数分析。  相似文献   

11.
钢-混凝土组合扁梁受力性能的有限元分析   总被引:15,自引:0,他引:15  
钢-混凝土组合扁梁是将钢梁内嵌于混凝土之中的新型组合梁,它能最大限度地降低结构的高度,形成类似”无梁楼盖”的结构体系,已在住宅钢结构中推广应用,其承载性能和设计方法研究引起了结构工程界的关注.本采用通用有限元程序ANSYS研究了组合扁梁的承栽力问题,通过建模计算了简支组合扁梁、悬臂组合扁梁和框架组合扁梁的承载力和变形特征,得到了相应的荷栽-位移过程曲线,并与组合扁梁的试验结果进行了比较,验证了计算结果的正确性.  相似文献   

12.
给出了钢-混凝土连续组合梁截面计算机辅助优化设计的有效方法,以有限元结构分析和优化算法相结合为手段,提出了一种符合实际情况的钢-混凝土组合梁的剪力连接模式,建立钢-混凝土连续组合梁有限元分析模型、优化参数模型,优化数学模型,用ANSYS的参数化设计语言编制了分析文件和优化控制文件,经计算获得钢-混凝土连续组合梁的最优截面形式.该方法的优化效果显著,并且效率高,可广泛应用于钢-混凝土连续组合梁截面优化设计工程.  相似文献   

13.
主要介绍了体外预应力钢一轻骨料混凝土组合连续梁的ANSYS建模过程,并对其进行受力金过程的模拟,考虑了预应力初始阶段组合梁的受力及变形,将计算值与实际值相比较.结果表明,ANSYS能较好地模拟出体外预应力钢一混凝土组合连续梁的受力全过程.以此建立了两跨体外预应力钢一轻骨料混凝土组合连续梁模型进行模拟,分析了体外预应力钢一混凝土组合连续梁的承载力及挠度,为体外预应力钢一轻骨料混凝土组合连续梁提供了设计依据及参考.  相似文献   

14.
预应力钢-钢筋混凝土组合梁具有刚度大、承载力高、延性好等特点,比传统的普通钢-混凝土组合梁具有更明显的技术经济效益和社会效益,应用也越来越多.为此,在采用合理的材料本构关系及有限元单元形式的基础上,开发出了用于预应力钢-钢筋混凝土梁非线性有限元分析的数值模拟软件,并通过算例进行了分析验证,证明了合理性.得到了一种新型处理本领域研究的数值模拟方法.  相似文献   

15.
钢-混凝土组合梁翼缘有效宽度分析   总被引:2,自引:0,他引:2  
在进行钢-混凝土组合梁设计分析时,考虑到剪力滞效应的影响,常采用翼缘有效宽度的概念计算组合结构的应力和变形.就国内外不同规范对翼缘有效宽度的规定进行了比较,指出了影响翼缘有效宽度的基本因素,阐明了我国规范和其他规范的差别,以及我国规范的不足之处.  相似文献   

16.
飞机机翼疲劳断裂过程的有限元分析   总被引:2,自引:0,他引:2  
重点研究了飞机机翼的疲劳与断裂问题.对机翼疲劳裂纹扩展进行了理论分析.介绍了疲劳断裂过程有限元模拟的几种方法,运用有限元分析软件ABAQUS.对飞机机翼疲劳断裂过程进行了有限元分析,结果表明,在加载条件下,飞机机翼发生疲劳断裂的最危险部位位于机翼根部.  相似文献   

17.
计算了受均布荷载的简支钢--砼组合梁在滑移效应时挠曲线的曲率,分析了曲率分布规律,其结果对挠度的精确计算有一定指导意义。  相似文献   

18.
由于体外预应力组合梁在受力过程中预应力钢束的长度发生较大幅度的变化,所以必须考虑预应力钢束在受力过程中应力的变化。作者提出的弯矩曲率法能够较好地模拟预应力组合梁的受力过程,能以较少的计算工作量有效地计算梁在极限状态的应力及变形,准确地计算出预应力钢束的应力变化。与用有限元进行分析计算相比可知:用有限元计算时,在进入塑性阶段以后,每级荷载的计算时间大约为1h,并且计算有可能不收敛;而采用弯距曲率法计算大约只需3min左右(极限荷载的计算大约需要20min),且没有不收敛的现象发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号