首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrangement, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the position of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.  相似文献   

2.
The distribution of front abutment pressure is closely related to the force,deformation and energy distribution of hard roof before periodic weighting. So it is necessary to carry out research on the relationship between them. According to front abutment pressure distribution feature,using the location of peak front abutment pressure as the dividing point,coal seam is divided into two parts along the direction of mining: the yield zone that is the area between the faceline and the point where the maximum front abutment pressure occurs,and the elastic zone that is the part before the point of peak front abutment pressure. The proposed mechanical model of unit width hard roof at the panel center before periodic weighting consists of five parts including the yield zone. All parameters of the deflection equations for each of the five parts that satisfy the continuity conditions and natural boundary conditions are obtained by using the Matlab software. The continuous curves of front abutment pressure,deflection,bending moment and bending strain energy density distribution of hard roof are obtained by iterative approximation method,and the relationship between the yield zone width and the above curves are analyzed in detailed.  相似文献   

3.
The evolution of gas bearing channels in the roof, and their spatial distribution, was studied. A complete consideration of gas flow changes through the stress–strain changes in the roof near a working face is made. The theoretical abutment pressure distribution using displacement monitors and borehole visual recording instruments allow a theoretical analysis. Field test research determined the conditions for formation of macroscopic gas channels. These appear along the working face roof, normally distributed to it. These results show that the coal rock stratification becomes a macroscopic gas channel boundary if its deformation is less than the lower layer, or greater than the layer above it. At the same time the stability is greater than the distance from the roof for hanging dew conditions. The working face advances and the roof gas channels experience a cycle of development. Microscopic channels dominate the initial stage then macroscopic gas channels form, develop, and close. The evolution of the macroscopic channels depends on the ratio between the distances from the new compaction area in the goaf to the initial stress area in front of the working face. The amount of daily advance of the face also affects channel development. The experimental observations in one mining area showed that the main gas channels are located about 2 and 6.2 m above the lower surface of the roof and that they have an evolution period 7 to 11 days long.  相似文献   

4.
工作面顶板周期来压是矿井灾害之一.本文用灰色系统理论的灾变预测和拓扑预测对工作面顶板周期来压进行了研究,并利用义马跃进煤矿支柱载荷的观测数据和工作面顶板周期来压的关系对工作面顶板周期来压进行预测,得出了精度较高的预测结果,为工作面顶板周期来压的预测提供了新的思路.  相似文献   

5.
工作面顶板周期来压是矿井灾害之一.本文用灰色系统理论的灾变预测和拓扑预测对工作面顶板周期来压进行了研究,并利用义马跃进煤矿支柱载荷的观测数据和工作面顶板周期来压的关系对工作面顶板周期来压进行预测,得出了精度较高的预测结果,为工作面顶板周期来压的预测提供了新的思路.  相似文献   

6.
针对不等长工作面煤层开采日渐增多的现状,采用数值模拟与理论分析相结合的方法,对采场覆岩的破坏特征及支承压力的分布状态进行系统研究,并相应模拟出工作面前方应力场与位移场的演化规律。结果表明:工作面自开切眼开始向前推移,推进到工作面“见方”期或斜长的整数倍位置时,顶板活动剧烈,覆岩空间结构发生新旧更替,形成了“0”型破断区;不等长工作面推进过程中岩层运移极不规则,推进距离在衔接面前后20~30m的范围内,应力波动较大,数值变化明显;回采期间支承压力对覆岩活动产生了重要影响,其大小约为水平应力的1.5~2倍;就采动过程中竖向位移的变化而言,巷帮移近量远大于顶底板变形量,故工程实践中应特别注意对巷帮及顶板的加固和维护。  相似文献   

7.
浅埋综采面高速推进对周期来压特征的影响   总被引:1,自引:0,他引:1  
以活鸡兔井为工程背景,通过实测和理论分析就浅埋综采面高速推进对周期来压特征的影响规律进行了深入研究.结果表明:在高速推进情况下(推进速度一般大于10m/d),工作面周期来压持续长度显著增加,而周期来压步距、支架载荷和动载系数的变化相对较小.推进速度差异引起周期来压特征发生变化的实质是围岩变形破坏特征时间效应的体现.工作面高速推进时,直接顶由于推进速度较快垮落不充分,老顶在破断回转过程中需要更大的回转量才能触矸稳定,这是导致来压持续长度明显增加的重要原因.将推进速度对周期来压特征的影响规律运用到了神东矿区双回撤通道综采面末采段的让压开采实践中,指导了活鸡兔井21306综采面的安全回撤.  相似文献   

8.
下分层综放工作面上覆岩层结构特征   总被引:1,自引:0,他引:1  
我国综放开采技术是在分层综采技术的基础上发展起来的,对于一直采用分层综采的一些大型厚煤层生产矿井,面临着顶分层采后下分层综放开采技术问题,这个问题与一次采全厚整层综放开采矿压显现有所不同.下分层综放开采时,二次垮落的直接顶岩层碎胀系数较小,垮落带高度与采高的比值将增加,造成顶分层开采时下位老顶岩层垮落后转化为规则垮落带,成为下分层综放工作面的上位直接顶,促使下分层综放工作面的老顶“砌体梁”式平衡结构向更高层位岩层发展.上位直接顶岩块强度较高、块度较大,容易形成“岩-矸”半拱式平衡结构.该结构的周期性失稳和垮落,造成采场出现小的周期来压现象;而“砌体梁”平衡结构的周期性失稳和垮落,将导致采场出现大的周期来压现象.  相似文献   

9.
通过对宜洛煤矿李沟井伪俯料放顶煤回采工作面的矿压观测,从4个方面研究了急倾斜伪俯斜放顶煤工作面矿压显现规律;(1)工作面的初次来压、周期来压步距和来压强度;(2)沿工作面走向控制区内的顶板压力状况,以及生产工序对控制区内支柱载荷的影响;(3)研究了沿倾斜方向矿压显现特点,分析了与近水平煤层矿压显现不同的原因;(4)观测了上下巷矿压显现规律,并分析了上下巷压力不同的原因.用统计法对伪俯斜放顶煤采煤法和分层开采上下巷矿压显现作了对比。  相似文献   

10.
为了解决大采深条带开采坚硬顶板工作面的冲击矿压问题,以古城煤矿2106工作面为例,采用现场分析、实验室试验、数值模拟的方法对其发生机理进行了研究.结果表明在此条件下开采时发生的冲击矿压与煤岩性质、采深、坚硬顶板厚度及顶板的周期来压有密切关系.当冲击矿压发生的煤层具有强冲击倾向性,煤层硬度系数大于3、采深900 m以上、顶板岩层坚硬且厚度大于20 m时,冲击矿压发生具有突然性和猛烈性;主要发生在顶板周期来压期间、超前支护50m范围内,此时工作面的CH4和CO气体含量同时升高.对此提出了钻屑法等预测预报的方法和煤体爆破卸压与柔性支护等治理措施.  相似文献   

11.
Understanding the cantilevers formed by thick, massive beds in the near-seam overburden above longwall panels and the associated loads and strata fracturing effects developed during caving(main and periodic weightings) are key elements for the successful implementation of longwalls. Such caving mechanisms rely on the geotechnical conditions within the panel. In India, the majority of longwall downtime and/or roof failures were caused by a lack of knowledge on overburden caveability, in particular when the main and periodic weightings will impact the face and longwall support selection to effectively mitigate such weightings. Godavari Valley Coal Fields is no exception as longwall faces were adversely affected due to the presence of thick, massive beds in the near-seam overburden at both Godavarikhani(GDK) 7 and 9 Incline mines. In contrast, overburden weightings were negotiated successfully in GDK10 A and Adriyala Longwall Project(ALP) mines by detailed geotechnical studies, the use of adequate longwall support capacities, and effective operational practices. Thirteen longwall panels with varying face width, at different depths have been extracted under massive sandstone beds of 18 m to28 m thickness at GDK 10 A and ALP mines. This study elucidates that the main roof weighting interval decreases with an increase in face width and attains a constant value with further increases in face width under the same geo-mining conditions. In addition, this study also concludes that with increases in face width, the periodic roof weighting interval decreases and shield loads increase. Similarly with increasing panel width to depth ratio, the main and periodic roof weighting intervals decrease but shield loads again increase. Lastly, the strata behaviour of the longwall face retreated along up-dip direction is demonstrated. The results of this paper improves the mechanistic understanding of the impact of face width,depth and main roof thickness on periodic weighting and associated roof control problems on the longwall face.  相似文献   

12.
华丰井田4煤层顶板砾岩水突出影响因素分析   总被引:5,自引:2,他引:3  
在分析砾岩分布特征及其水文地质特征的基础上,以矿山压力控制理论为指导,运用岩层沉降理论推断了华丰矿1409工作面在采厚为6.5m的情况下,导水裂隙带发育高度为96.2m,揭示了导水裂隙能够导致顶板砾岩水突出.结合矿山压力观测资料和顶板突水量资料,阐述了矿山压力和顶板砾岩突水突出之间的因果影响关系.根据2407工作面冲击地压监测资料,阐明冲击地压对顶板突水的促进作用.建立了顶板水沿工作面下平巷突出运移的模型,阐明了斑裂线是导致砾岩水大量突出的主要导水通道.  相似文献   

13.
The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure. The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area. Fracture and damage mechanics theory is used to understand the observations. The following two techniques were used to understand the evolution of gas flow channels: field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples. Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration. The abutment pressure affects the local stress and, hence, the local gas conduction. The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area. Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network. Gas permeability continuously increases during this time. This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.  相似文献   

14.
A water-resistant key strata model of a goaf floor prior to main roof weighting was developed to explore the relationship between water inrush from the floor and main roof weighting. The stress distribution,broken characteristics, and the risk area for water inrush of the water-resistant key strata were analysed using elastic thin plate theory. The formula of the maximum water pressure tolerated by the waterresistant key strata was deduced. The effects of the caved load of the goaf, the goaf size prior to main roof weighting, the advancing distance of the workface or weighting step, and the thickness of the waterresistant key strata on the breaking and instability of the water-resistant key strata were analysed.The results indicate that the water inrush from the floor can be predicted and prevented by controlling the initial or periodic weighting step with measures such as artificial forced caving, thus achieving safe mining conditions above confined aquifers. The findings provide an important theoretical basis for determining water inrush from the floor when mining above confined aquifers.  相似文献   

15.
根据采场围岩控制原则、垮落带岩层的判别式、裂隙带老顶在触矸处的下沉量计算式和移动支承压力与采深的关系,分析了采深对采场矿压显现不同参数的影响,并通过实测加以验证根据岩性随采深的变化,讨论了深井采场可能出现的冒顶事故,并提出了相应的控制,认为采深对矿压显现的影响在采场支护方面不明显,而煤壁片帮将随采深增加而加剧。深部围岩逐渐变碎强度有所降低。深部采场应加强对垮睦顶事故的防治,把顶板护好。  相似文献   

16.
为了解决蹬空对巷道围岩变形影响严重等问题,针对张集矿1410(1)工作面复杂的地质条件,采用计算机数值模拟(UEDC)系统和现场工程实践相结合的方法,对工作面推进不同距离时上覆岩层垮落形态、初次来压步距、周期来压步距、液压支架受力以及巷道围岩的变形特征进行研究。研究表明:工作面老顶初次来压步距约为32 m左右,周期来压步距约为16 m左右。工作面液压支架所需支撑的最大岩层高度约为25m。在工作面每天正常推进8m的情况下,工作面压架的危险性较小。  相似文献   

17.
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM.  相似文献   

18.
The key problem to be solved urgently is how to avoid the occurrence of support break-off and water inrush in the stoping of sandstone straight roof under the action of load transfer in unconsolidated aquifer. For this reason, taking the thin bedrock 1602(3) working face of Huainan(the middle part of Anhui Province) Panyi Coal Mine as the engineering background, this study establishes the stope mining model by using the discrete element UDEC software and the mathematics mechanical model of the support load,and analyzes the reason of support crushing and decides to re-mining the working face by using the compulsive roof caving method. It is concluded that when the working face of sandstone straight roof is broken, the ‘‘voussoir beam" structure cannot be formed and acts on the support in the form of cantilever beam, but only when it falls to the high key stratum can the ‘‘voussoir beam" structure be formed and at this point, at this time, the bracket bears the weight of the rock layer in the range from the fractured sandstone layer to the lower critical layer. The working resistance of the support increases with the increase of the thickness and the breaking length of straight sandstone roof. When the breaking length of the roof reaches a certain extreme value, the support crushing accidents will occur. Managing roof with compulsive roof caving method can reduce the intensity of rock pressure in the stope, and the working face can be safely stoped, which provides a certain reference for similar conditions.  相似文献   

19.
综放回采巷道围岩力学特征实测研究   总被引:17,自引:1,他引:17  
通过对综放面回采巷道围岩的深部位移、表面位移、应力分布以及支架荷载的实测分析,得出综放面回采巷道围岩力学特征分布规律.研究表明,临近工作面巷道围岩处于支承压力降低区,支架荷载下降,但支架和围岩变形最剧烈,表明巷道围岩处于岩石峰后的力学状态.围岩变形主要发生支承压力影响区,合理的巷道支护应能控制采动影响剧烈阶段的围岩变形,顺槽支护设计理念应从载荷控制向变形控制转变.  相似文献   

20.
煤层顶板垮落是煤矿生产常见的灾害,煤层顶板稳定性预测是防治顶板事故的关键技术措施。构造应力是影响煤层顶板稳定性的重要因素之一。利用FLAC3D软件,分析在构造应力的影响下煤层项板在采动过程中的变形破坏特征,以及不同侧压条件下煤层顶板的移动规律。结果表明,顶板破坏在岩梁中部是由下向上发展的,在一定的条件下,随着水平构造应力的增大,顶板破坏范围逐步减小,顶板岩层的位移逐步减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号