首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
轴心受压核心高强素混凝土短柱试验分析   总被引:2,自引:0,他引:2  
为考察核心高强混凝土柱的受力性能,进行了16根轴心受压核心高强混凝土短柱的试验研究,.单轴受压时核心高强混凝土的峰值压应变高于外围普通混凝土的峰值压应变,由加载到破坏的过程中,外围普通混凝土先达到峰值压应变,核心高强混凝土后达到峰值压应变.所考察柱的轴心受压正截面承载力由核心高强混凝土和外围普通混凝土共同提供,但核心高强混凝土和外围普通混凝土所提供的抗力需分别乘以考虑两部分混凝土峰值压应变不同的抗力调整系数n1和n 2.基于16个试件的试验结果和189根核心高强混凝土柱的数值计算结果,拟合得到了核心高强混凝土抗力调整系数n1和外围普通混凝土抗力调整系数n 2的表达式.按照建议公式所得轴心受压承载力计算值与试件的抗力试验值吻合良好.  相似文献   

2.
为了研究钢骨-圆钢管高强混凝土组合长柱轴心受压的力学性能,采用ABAQUS软件建立钢骨-圆钢管高强混凝土组合长柱轴心受压有限元分析模型,讨论了组合长柱典型试件荷载-变形关系曲线,不同受力阶段应力分布规律及最终破坏模态.通过进行参数分析,考虑不同参数对组合长柱轴心受压力学性能的影响,利用回归分析得到组合长柱轴心受压承载力简化计算公式.结果表明,混凝土强度、配骨指标和钢材强度对组合长柱轴心受压承载力影响较大,长细比影响较小,简化公式计算结果与有限元计算结果及试验结果吻合良好.  相似文献   

3.
圆钢管高强混凝土轴压短柱性能的试验研究   总被引:1,自引:2,他引:1  
通过12根圆钢管普通强度混凝土和24根圆钢管高强混凝土轴心受压短柱的试验,描述了圆钢管高强混凝土轴压短柱的试验现象和破坏过程,分析了其破坏机理;讨论了影响圆钢管高强混凝土轴压短柱力学性能的主要因素,包括钢材强度、混凝土强度、含钢率和套箍系数等;比较国内设计规程在计算圆形钢管混凝土强度承载力时的差异,提出可供工程应用参考的结论.  相似文献   

4.
利用353根钢管混凝土柱轴心受压试验结果,以混凝土强度、钢管强度和钢管径厚比为参数,分析《钢管混凝土结构技术规程》(CECS28:2012)中圆钢管混凝土柱轴心受压承载力计算方法的合理性.结果表明:CECS28:2012可以合理预测圆钢管混凝土短柱的轴心受压承载力,但对长柱的轴心受压承载力计算值过于保守且离散较大.在本研究参数取值范围内,提高混凝土强度和增大径厚比对CECS28:2012轴心受压承载力计算值准确性的影响不明显.随着钢管强度增大,圆钢管混凝土柱轴心受压承载力计算值与试验值的比值呈下降的趋势.基于CECS28:2012钢管混凝土短柱轴心受压承载力计算方法,提出适用于长细比为4~38.5的钢管混凝土长柱的轴心受压承载力折减系数计算公式,可为工程应用和规范修订提供参考.  相似文献   

5.
圆钢管RPC短柱轴心受压极限承载力分析   总被引:1,自引:0,他引:1  
为了研究钢管活性粉末混凝土(钢管RPC)柱轴心受压力学特性,采用全截面受压方法进行了圆钢管RPC短柱轴心受压试验,测试了其在荷载作用下的变形、应变情况.试验结果表明,在荷载达到极限承载力时,钢管PRC短柱的变形主要处于弹性阶段,当承载力下降到极限承载力的80%~90%后趋于平缓,在总结相关试验资料的基础上,参照CECS 104:99中钢管高强混凝土极限承载力公式,提出了钢管RPC短柱的极限承载力计算经验公式.为了便于工程应用,把公式中的混凝土强度及其对应的系数α进行了扩展,采用扩展后的系数α对试验数据重新进行了计算,计算结果与试验数据符合良好,能满足工程应用.  相似文献   

6.
目的研究FRP管高强混凝土轴压柱的受力性能,以利于实际工程的设计.方法通过4根FRP管高强混凝土组合柱轴压试验,探讨组合柱的破坏特征及受力特点,研究FRP管纤维缠绕角度、FRP管厚度等参数对组合柱受力性能的影响.基于叠加法,分析混凝土和FRP管对承载力的贡献.结果组合柱承载力随着FRP管壁纤维缠绕角度的减小而增加,随着FRP管壁厚度增加而增加,采用叠加法研究并推导出了一组更为合理的FRP管高强混凝土组合柱轴心受压承载力计算公式.结论理论计算结果与试验结果吻合良好.  相似文献   

7.
钢管(高强)混凝土轴压稳定承载力研究   总被引:8,自引:0,他引:8  
采用考虑构件具有千分之一杆长的初挠度,利用对偏压构件承载力的计算方法分析钢管(高强)混凝土轴心受压构件的稳定承载力,推导了稳定系数的计算公式,理论分析结果与试验结果吻合良好。  相似文献   

8.
为研究方钢管高强再生混凝土柱的轴心受压性能,设计了3个方钢管高强混凝土柱足尺试件.3个试件几何尺寸相同,区别在于混凝土类型与内部构造.试件1为方钢管高强普通混凝土柱,试件2为方钢管高强再生混凝土柱,试件3为腔体内设置钢筋笼的方钢管高强再生混凝土柱.试验加载采用单向重复加卸载的方法.通过试验分析了各试件的破坏特征、承载力、耗能、延性和刚度,采用国内外5种规程对各试件轴心受压承载力进行了计算.研究表明:方钢管高强再生混凝土柱损伤过程和破坏形态与方钢管高强普通混凝土柱类似;方钢管内设置钢筋笼可显著提高试件的承载力、延性和耗能,减缓刚度退化;矩形钢管混凝土结构技术规程(CECS 159—2004)承载力计算公式可用于方钢管高强再生混凝土柱轴压承载力计算,计算结果与实测值符合较好.  相似文献   

9.
通过4根高强混凝土管柱长柱的受压全过程试验及2根管柱的受拉全过程试验,研究了高强混凝土受压管柱的正常使用状态及极限状态的受力及变形特征、破坏过程及其承载力.并且研究了高强混凝土受拉管柱在正常使用状态下的变形规律、裂缝开展情况及受拉承载力.通过试验,发现高强混凝土管柱破坏具有突然性.同时用数值积分方法编制了非线性分析程序并分析了9根高强混凝土管柱.结果表明,计算结果与试验数据吻合较好,并且管柱承载力主要取决于混凝土强度及长细比.  相似文献   

10.
通过4根高强混凝土管柱长柱的受压全过程试验及2根管柱的受拉全过程试验,研究了高强混凝土受压管柱的正常使用状态及极限状态的受力及变形特征、破坏过程及其承载力。并且研究了高强混凝土受拉管柱在正常使用状态下的变形规律、裂缝开展情况及受拉承载力。通过试验,发现高强混凝土管柱破坏具有突然性。同时用数值积分方法编制了非线性分析程序并分析了9根高强混凝土管柱。结果表明,计算结果与试验数据吻合较好,并且管柱承载力主要取决于混凝土强度及长细比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号