首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
连续表面处理超高分子量聚乙烯纤维的研究   总被引:1,自引:0,他引:1  
用不同方法对超高分子量聚乙烯(UHMWPE)纤维进行连续表面处理,研究了不同处理液和处理工艺对UHMWPE纤维增强复合材料界面粘结强度的影响.用扫描电子显微镜、偏光显微镜等方法,分析了处理前后纤维表面性能、表面形貌的变化.研究结果表明,经过表面处理后,纤维在保持原纤维力学性能的同时,与树脂的粘结性得到很大的提高.  相似文献   

2.
采用吡咯化学沉积聚合方法对聚酯(PET)纤维进行表面改性,研究聚合工艺条件对纤维与环氧树脂界面剪切强度的影响.分别用SEM、共聚焦显微镜、DMA及单纤维拔出实验等测试手段对改性前后纤维的表面形貌、粗糙度、聚吡咯(PPy)与基体纤维大分子作用力及复合材料的界面剪切强度(IFSS)进行研究.结果表明:吡咯化学沉积聚合改性是一种有效提高纤维与树脂界面粘结性能的方法.此外,可进一步通过聚合改性工艺条件控制聚吡咯层的形貌及聚吡咯与基体纤维大分子的作用力,从而调控纤维与树脂界面剪切强度,吡咯气相化学沉积后再液相沉积,增强复合材料界面剪切强度比原纤维的提高了127.98%.  相似文献   

3.
超高分子量聚乙烯纤维(UHMW-PE)由于结构特性导致其粘接性很差,给高性能轻型复合材料的研制带来困难。本实验采用低温等离子体以及铬酸等对各种拉伸比的UHMW-PE纤维进行表面改性,通过纤维拔出环氧树脂基体测界面粘接强度,利用SEM观察研究了界面脱粘机理。结果表明:经等离子体处理后。界面粘接强度可提高四倍以上,其大小与纤维拉伸比及等离子体处理参数均有关;界面产生的裂纹在纤维内部沿纤维方向扩展,拔出后纤维表面层被剥掉;等离子体处理方法与化学表面处理方法相结合。可望进一步提高界面粘接强度。  相似文献   

4.
为了改善碳纤维与树脂基体之间的界面性能,以噻吩为单体,采用循环伏安法对碳纤维进行电化学聚合改性.利用扫描电子显微镜研究了电化学聚合改性前后碳纤维的表面结构变化,采用电脑伺服控制材料试验机测试了碳纤维增强环氧树脂复合材料的力学性能.结果表明,当噻吩浓度为0.4 mol/L时,峰值电流增加幅度最大,电聚合效果最佳.当循环次数达到60次时,碳纤维表面电化学聚合反应完全,碳纤维/环氧树脂复合材料的层间剪切强度可由13.46 MPa增加到23.79 MPa,提高约76.75%.电化学聚合后大量片层状聚噻吩聚合物在碳纤维表面聚集,碳纤维与环氧树脂基体紧密结合,界面性能明显提高.  相似文献   

5.
为了改善碳纤维与树脂基体之间的界面性能,以噻吩为单体,采用循环伏安法对碳纤维进行电化学聚合改性.利用扫描电子显微镜研究了电化学聚合改性前后碳纤维的表面结构变化,采用电脑伺服控制材料试验机测试了碳纤维增强环氧树脂复合材料的力学性能.结果表明,当噻吩浓度为0. 4 mol/L时,峰值电流增加幅度最大,电聚合效果最佳.当循环次数达到60次时,碳纤维表面电化学聚合反应完全,碳纤维/环氧树脂复合材料的层间剪切强度可由13. 46 MPa增加到23. 79 M Pa,提高约76. 75%.电化学聚合后大量片层状聚噻吩聚合物在碳纤维表面聚集,碳纤维与环氧树脂基体紧密结合,界面性能明显提高.  相似文献   

6.
为提高路面板材料的力学性能,以超高分子质量聚乙烯(UHMWPE)为基体树脂、连续玻璃纤维织物为增强体,通过设计挤出模头,釆用熔融浸渍工艺和层压工艺,制备连续玻璃纤维增强UHMWPE复合材料层压板.研究玻璃纤维体积分数(30%、40%、50%和55%)对UHMWPE复合材料拉伸、层间剪切、冲击等性能的影响规律,测试分析不同纤维体积含量条件下的UHMWPE复合材料热性能的变化规律.测试结果表明:当玻璃纤维体积分数分别为50%、40%时,UHMWPE复合材料拉伸强度和层间剪切强度分别达到最大值,分别为675.9 MPa和23.13 MPa,证明增加玻璃纤维的体积含量可有效提高UHMWPE复合材料冲击强度.当温度分别低于70℃和91℃时,UHMWPE复合材料的储能模量与损耗模量随着纤维体积含量的增加而增加.提高UHMWPE复合材料的纤维体积含量,可在一定程度上提高其玻璃化温度.  相似文献   

7.
国产高强中模碳纤维性能优异,但其表面活性低,与树脂基体的结合能力较差。为了改善国产高强中模碳纤维表面活性,提高其与环氧树脂的界面性能,采用常压脉冲放电与射频放电协同的射流等离子体放电形式,对碳纤维表面进行改性处理,并系统研究了改性前后碳纤维的表面形貌、单丝强度、与环氧树脂的接触角、表面O/C比、含氧活性基团含量、复合材料层间剪切强度(ILSS)等参量。结果发现:等离子体处理3次时(约为120 s)碳纤维表面性能最佳,与原样相比,其接触角降低了21.3%,O/C比提升了53.3%,C1s峰上的C-O和COOH含量分别提高了95.61%与179.37%,复合材料的层间剪切强度提高了64.49%,说明其界面性能得到了大幅度提升。此外,常压协同射流等离子处理对纤维本体未造成明显损伤,且一定程度上起到修复纤维表面疵点的作用,增加了表面粗糙度,有效提高了碳纤维对树脂的浸润性能。  相似文献   

8.
PET纤维表面呈惰性、不易与树脂浸润,有必要对PET纤维表面进行处理,提高PET纤维的的表面活性,进而提高PET纤维/环氧复合材料界面性能。采用冷等离子体技术对PET纤维进行表面处理,利用ES-CA和SEM分析了冷等离子体处理前后PET纤维表面的元素组成和层间剪切断口形貌的变化;研究了冷等离子处理前后浸润性、PET纤维/环氧复合材料界面性能的变化。结果表明:经冷等离子体处理PET纤维表面含氧和氮的极性基团增加、浸润性改善显著,进而使涤纶纤维/环氧复合材料界面剪切强度提高。  相似文献   

9.
为提高铁黄颜料在熔纺过程中与UHMWPE(超高分子量聚乙烯)/聚烯烃共混体系的相容性,采用硅烷偶联剂KH-570对铁黄颜料进行表面改性;通过熔体扭矩、流变性能、断裂强力、DSC、X光衍射等表征手段研究了铁黄颜料表面改性及其添加量对UHMWPE/聚烯烃共混体系熔纺性能和有色纤维性能的影响。结果表明:硅烷偶联剂表面改性能够有效提高铁黄颜料在共混体系中的分散性能;随着颜料添加量的提高,低剪切速率下UHMWPE/PO/颜料共混体系黏度逐渐增大,高剪切速率下其黏度与UHMWPE/PO共混体系相似;当改性颜料添加量为3%时,UHMWPE/PO/铁黄颜料具有良好可纺性;熔纺UHMWPE/PO原液着色纤维机械性能随铁黄颜料含量的增加而下降,当颜料添加量为1%时,所得有色纤维断裂强度505.78 MPa、结晶度44.2%、K/S值8.95、色牢度良好。  相似文献   

10.
超高分子量聚乙烯(UHMWPE)添加纳米氧化铝(NAL),酸蚀纳米氧化铝(ATNAL)及功能化纳米氧化铝(FNAL)可制得拉伸性质更优异的复合纤维。正如傅里叶红外光谱分析中所述,在功能化过程中马来酸酐接枝聚乙烯(PEg-MAH)分子成功接枝在ATNAL表面,使得FNAL样品比表面积数值明显增大。当添加极少量的FNAL时,UHMWPE/FNAL(F100Aax%-81PEg-MAHzy)初丝拉伸性能得到明显增强。本文对UHMWPE/NAL,UHMWPE/ATNAL及UHMWPE/FNAL初丝热学性质及拉伸性质进行分析,并研究纳米氧化铝对纤维拉伸性质的影响。  相似文献   

11.
为了提高碳纤维与树脂基体之间的粘结性能,采用循环伏安法,以丙烯酸为聚合单体对碳纤维进行了电聚合改性.利用傅里叶红外光谱仪和扫描电子显微镜研究了改性前后碳纤维表面的结构变化,并利用电脑伺服控制材料试验机对复合材料进行了力学性能测试.结果表明:当丙烯酸浓度为0.3 mol/L、循环次数为10次时,碳纤维的改性效果最佳;改性后的碳纤维在红外光谱的2 680 cm-1附近出现了—OH特征吸收峰;复合材料的层间剪切强度由10.50 MPa增加到了23.44 MPa,提高了123.21%;改性后碳纤维表面出现了圆片状丙烯酸聚合物层,且可与环氧树脂基体紧密结合.  相似文献   

12.
采用平板硫化机制备UHMWPE纤维针织增强体复合材料,确定基体配制的工艺,同时对改性前后的UHMWPE纤维针织增强体复合材料的拉伸性能、弯曲性能、压缩性能及层间剪切性能等基本力学性能进行了探究,分析了不同增强体下复合材料的破坏情况。实验结果表明,最佳的基体工艺为:环氧树脂:固化剂=10:3,稀释剂丙酮10%,扩散剂邻苯二甲酸二丁酯20%,混合温度50℃,搅拌时间20min;对比分析改性前后的针织增强体复合材料的力学性质,增强体选用罗纹半空气层衬纬组织更为理想。  相似文献   

13.
界面强度对纤维复合材料破坏及力学性能的影响   总被引:4,自引:1,他引:3  
界面作为复合材料中的重要组成部分对其宏观力学性能及破坏模式有着不可忽视的影响. 本文采用自组装薄膜技术对玻璃纤维表面改性, 得到不同表面性质的玻璃纤维, 与环氧树脂基体复合得到不同界面强度的复合材料. 利用带偏光显微镜的拉伸仪, 研究在不同界面强度下玻璃纤维/环氧树脂基复合材料的破坏过程及力学性能. 结果表明, 复合材料在强界面情况下发生脆性破坏, 在弱界面情况下发生韧性破坏, 且增强纤维对复合材料性能的增强效果与界面强度有关.  相似文献   

14.
以乙酰氯为酯化剂,在自制的离子液体1-乙烯基-3-羟乙基咪唑氯盐中对芦苇纤维进行均相酯化改性;制备了聚乙烯/芦苇纤维(P/R)和聚乙烯/酯化芦苇纤维(P/ER)两种复合材料;考察了芦苇纤维用量及酯化改性对复合材料力学性能、加工性能及微观形貌的影响。结果表明,芦苇纤维和均相酯化芦苇纤维质量分数均为30%时,两种复合材料的综合性能较优。其中,添加均相酯化改性芦苇纤维的P/ER复合材料不仅较P/R复合材料的冲击强度提高了61.0%,而且均相酯化改性芦苇纤维对PE的抗拉强度、弯曲强度和弹性模量无不良影响。均相酯化改性芦苇纤维能够改善P/ER复合材料的加工流动性能,使其熔体流动速率提高了31.4%。均相酯化改性能够促进芦苇纤维在聚乙烯中的分散,提高其与聚乙烯基体树脂的界面相容性。  相似文献   

15.
采用甲基四氢邻苯二甲酸酐为固化剂,2,4,6-三(二甲氨基甲基)苯酚(DMP-30)为促进剂,并通过KH550修饰的玄武岩纤维(BF)对双酚F型环氧树脂进行改性。利用电子万能试验机、冲击试验箱、静态热机械检测仪(TMA)等设备对环氧树脂复合材料进行性能分析,对表面修饰前后的玄武岩纤维改性的双酚F型环氧树脂复合材料性能进行对比,结果显示:总体上拉伸强度,断裂伸长率和冲击强度呈现递增的趋势;玻璃化转变温度和热膨胀系数呈现递减的趋势。与原始BF改性环氧树脂复合材料相比,经表面修饰的BF改性双酚F型环氧树脂复合材料的各项性能均有所提高,表明BF对双酚F型环氧树脂同时兼有增强和增韧的作用。  相似文献   

16.
以杂化涂层处理后的玻璃纤维(GF)为增强材料,以环氧树脂(EP)为基体,制备出单根GF/EP复合材料。利用扫描电镜(SEM)观察和单纤维复合材料断裂试验,对高温热处理后的复合材料断面形貌和界面剪切强度进行分析。结果表明:杂化涂层的存在降低了GF与EP基体间热线性膨胀系数不匹配性,使GF/EP复合材料的耐热性能得到有效提高,其界面剪切强度较未改性前提高了68.9%。  相似文献   

17.
PET纤维/环氧复合材料界面性能改性研究   总被引:1,自引:0,他引:1  
PET纤维表面呈惰性、不易与树脂浸润,有必要对PET纤维表面进行处理,提高PET纤维的的表面活性,进而提高PET纤维/环氧复合材料界面性能.采用冷等离子体技术对PErr纤维进行表面处理,利用ESCA和SEM分析了冷等离子体处理前后PET纤维表面的元素组成和层间剪切断口形貌的变化;研究了冷等离子处理前后浸润性、PET纤维/环氧复合材料界面性能的变化。结果表明:经冷等离子体处理PET纤维表面含氧和氮的极性基团增加、浸润性改善显著,进而使涤纶纤维/环氧复合材料界面剪切强度提高。  相似文献   

18.
应用阳极氧化法对M—40高模量碳纤维进行表面改性,在酚醛环氧树脂中加入QY8911—Ⅰ型双马来酰亚胺树脂进行基体改性。测定了几种不同体系的M—40/酚醛环氧复合材料在室温和高温(160℃)的层间剪切强度和抗冲击强度,并用SEM观察分析了剪切和冲击断口形貌。结果表明,纤维和基体同时改性的复合材料不仅具有较高的界面强度,而且具有较好的冲击韧性。  相似文献   

19.
超高分子量聚乙烯纤维防弹复合材料的研究   总被引:9,自引:0,他引:9  
讨论了不同基体种类、不同结构超高分子量聚乙烯(UHMWPE)纤维复合材料的防弹性能。实验结果表明:聚氨酯(PU)和低密度聚乙烯(LDPE)均可以作为UHMWPE纤维防弹复合材料的基体使用;正交辅层结构为UHMWPE纤维防弹复合材料的首选结构。另外,还研究了基体含量、模压工艺对UHMWPE纤维复合材料防弹性能的影响,确定以LDPE为基体时其最佳基体含量在26%左右,同时指出模压工艺对复合材料的防弹性能无显著相关性。  相似文献   

20.
应用阳极氧化法对M-40高模量碳纤维进行表面改性,在酚醛环氧树脂中加入QY891-I型双马来酰亚胺树脂进行基体改性。测定了几种不同体系的M-40/酚醛环氧 合材料在室温和高温的层间剪切强度和抗冲击强度,并用SEM观察分析了剪切和冲击断口形貌。结果表明,纤维和基体同时改性的复合材料不仅具有较高的界面强度,而且具有较好的冲击韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号