首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have studied a new lead-free ceramic of(1-y)Bi_(1-x)Nd_xFeO_(3-y)BiScO_3(0.05≤x≤0.15 and 0.05≤y≤0.15) prepared by a conventional solid-state method, and the influences of Nd and Sc content on their phase structure and electrical properties were investigated in detail. The ceramics with 0.05≤x≤0.10 and 0.05≤y≤0.15 belong to an R3 c phase, and the rhombohedral-like and orthorhombic multiphase coexistence is established in the composition range of 0.125≤x≤0.15 and y=0. The electrical properties of the ceramics can be enhanced by modifying x and y values. The highest piezoelectric coefficient(d33~51 p C/N) is obtained in the ceramics with x=0.075 and y=0.125, which is superior to that of a pure BiFeO_3 ceramic. In addition, a lowest dielectric loss(tan δ~0.095%, f=100 k Hz) is shown in the ceramics with x=0.15 and y=0 due to the involvement of low defect concentrations, and the improved thermal stability of piezoelectricity at 20–600oC is possessed in the ceramics. We believe that the ceramics can play a meaningful role in the high-temperature lead-free piezoelectric applications.  相似文献   

2.
Nanocrystalline and amorphous LaMg12-type LaMg11Ni + x wt% Ni (x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter (DSC) connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability (HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time.  相似文献   

3.
Mn-Zn ferrites (Mn1?x Zn x Fe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8.  相似文献   

4.
TiC x /Cu composites were fabricated by combustion synthesis and hot press technology. Using XRD, SEM, EDS, FESEM analysis methods, the effects of various carbon sources and different Cu contents on the microstructures of TiC x /Cu composites and the size of TiC x particles were investigated. Results showed that TiC x reinforcing particles size increases with decreasing Cu content in Cu-Ti-C reaction system. With carbon nanotubes (carbon black) serving as carbon source, the generated TiC x particles size transits from nanometer to submicron when Cu content corresponding to the reaction system is reduced to 60 vol% (70 vol%); while graphite serves as carbon source, there is no clear limiting concentration. C particles with smaller size, larger specific surface area and better distribution result in finer TiC x particles, which is more beneficial to generating nano-sized TiC x /Cu composites.  相似文献   

5.
CuO-doped (Ag0.75Li0.1Na0.1K0.05)NbO3 (ALNKN-xCuO, x = 0–2mol%) lead-free piezoelectric ceramics were prepared by the solid-state reaction method in air atmosphere. The effects of CuO addition on the phase structure, microstructure, and piezoelectric properties of the ceramics were investigated. The experimental results show that the ALNKN ceramics without doping CuO possess rhombohedral phase along with K2Nb6O16-type phase and metallic silver phase. For all of the CuO-doped ALNKN ceramics, a pure perovskite structure with the orthorhombic phase was obtained by enclosing the samples in a corundum tube. A homogeneous microstructure with the grain size of about 1 μm was formed for the ceramics with 0.5mol% CuO. The grain size increases with increasing amount of CuO. The temperature dependence of dielectric properties indicates that the ferroelectric phase of the ALNKN-xCuO ceramics becomes less stable with the addition of CuO. The ceramics with x = 1mol% exhibit relatively good electrical properties along with a high Curie temperature. These results will provide a helpful guidance to preparing other AN-based ceramics by solid-state reaction method in air atmosphere.  相似文献   

6.
High performance piezoelectric ceramics with high Curie temperatures(TC) are the bottle necks of relevant high temperature devices. In this study, the electrical performance and microstructure of Li and Mn codoped Aurivillius-type composite ceramics with a composition Ca_(0.99-x_Bi_(6.99+x)(Li Mn)_(0.01) Nb Ti_5O_(24)(x = 0–0.8) were systematically investigated. The results indicated that uniform intergrowth structure with a lattice similar to that of the end member CBT could be formed at a low x value(x 0.4). Phase separation occurred when more A-site Ca~(2+) ions were replaced by Bi~(3+) ions. Nevertheless, all composite samples showed d_(33) values about 2 to 3 times of that of the constituent phase Ca Bi_4Ti_4O_(15) and Bi_3 Ti NbO_9 with still a high depolarization temperature. The performance of the samples was found to be related to the density and larger lattice distortion along the polarization a axis. The results also demonstrated that formation of the compound system was an effective way in improving the performance of Aurivillius-type high TC piezoelectric ceramics.  相似文献   

7.
The Cu x Si1-x thin films have been grown by pulsed laser deposition (PLD) with in situ annealing on Si (001) and Si (111), respectively. The transformation of phase was detected by X-ray diffraction (XRD). The results showed that the as-deposited films were composed of Cu on both Si (001) and Si (111). The annealed thin films consisted of Cu + η”-Cu3Si on Si (001) while Cu + η’-Cu3Si on Si (111), respectively, at annealed temperature (T a) = 300-600 °C. With the further increasing of T a, at T a= 700 °C, there was only one main phase, η”-Cu3Si on Si (001) while η’-Cu3Si on Si (111), respectively. The annealed thin films transformed from continuous dense structure to scattered-grain morphology with increasing T a detected by field emission scanning electron microscope (FESEM). It was also showed that the grain size would enlarge with increasing annealing time (t a).  相似文献   

8.
This work aimed to study the inactivate kinetics of Staphylococcus aureus (S. aureus) in artificial seawater by ultraviolet radiation, establish relationships between model parameters and growth phases, and explain the mechanization of UV disinfection by molecular biological detection. Investigations were carried out for the validation of Chick-Watson, Collins-Selleck, Hom and Biphasic models when S. aureus was in stationary phase (t=14 h). The results showed that the Biphasic kinetic model’s R2 turned out to be the highest one (R2=0.9892) and RMSE was less than 0.5 (RMSE =0.2699). The Biphasic kinetic model was better fit for ultraviolet disinfection than the other three models under the circumstance of this experiment and chosen to fit the ultraviolet disinfection curves for microorganisms at three growth phases. The sensitivity of microorganisms under ultraviolet radiation was in the following order: in exponential phase > in stationary phase > in lag phase by comparing the indexes of the Biphasic model (k1 and x). Besides, agarose gel electrophoresis was used in order to directly assess the damage to DNA of microorganisms that were exposed to the different dose of UV irradiation. The results revealed that DNA damage caused by UV radiation was an important reason for the microorganism inactivation and as the UV dose increased, there was greater damage caused in DNA.  相似文献   

9.
Nanocrystalline zirconia (ZrO2) was synthesized using a microwave-hydrothermal process. The effect of pH on the crystallization of the ZrO2 powders was investigated. The phase and microstructure of ZrO2 powders were examined using X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Results show that pure m-ZrO2 can be obtained at low pH (pH<2). Pure t-ZrO2 is formed at pH = 7 and 14. The size of the ZrO2 crystals is in the range of 8-26 nm and decreases with increasing pH. The formation of m-ZrO2 results from the precipitation of ZrO2 from solution. The t-ZrO2 is formed through the in-situ structural rearrangement of amorphous Zr(OH) x O y . The stabilization of t-ZrO2 is attributed to the small crystal size and the adsorption of hydroxy ions on the surfaces of the crystals.  相似文献   

10.
(Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics doped with x wt%CaZrO3 (x= 0-10) were synthesized by solid-state reaction method. The effects of CaZrO3 amount on the dielectric properties and structure of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics were investigated. X-ray diffraction results indicated a pure cubic perovskite structure for all samples and that the lattice parameter increased till x=5 and then slightly decreased. A homogenous microstructure was observed with the addition of CaZrO3. Dielectric measurements revealed a relaxor-like characteristic for all samples and that the diffusivity γ reached the maximum value of 1.78 at x=5. With the addition of CaZrO3, the dielectric constant dependence on electric field was weakened, insulation resistivity enhanced and dielectric breakdown strength improved obviously and reached 19.9 kV/mm at x=7.5. In virtue of low dielectric loss (tan δ<0.001 5), moderate dielectric constant (εr >1 500) and high breakdown strength (Eb >17.5 kV/mm), the CaZrO3 doped (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramic is a potential candidate material for high power electric applications.  相似文献   

11.
The crystal structure, band structure, density of states, Mulliken charge, bond population and optical properties for LiBi1-xMxO3 (M=V, Nb, and Ta) were investigated using hybrid density functional theory. It was found that LiBiO3 doped with V, Nb, and Ta presented distinctly stronger covalent interactions in M-O (M=V, Nb, and Ta) than Bi-O, thus resulting in mild distortion of the structure and facilitating the separation of photogenerated carriers. Furthermore, the hybridizations of Bi-6s, M-d (M=V, Nb, and Ta) and O-2p widened the valence and conduction bands, which promoted transmission of photogenerated carriers in the band edge and thus caused better photocatalytic performance.  相似文献   

12.
The behavior that different magnetic treatment directions induce various amounts of welding residual stress reductions in low alloy steel was studied. Reductions of 26%–28% in the longitudinal stress σ x were obtained when low frequency alternating magnetic treatment was applied perpendicularly to the welding bead, whereas reductions of 20%–21% in σ x were measured by using the same treatment parameters except that the field direction was applied parallel to the bead. It is proposed that different extent of stress reductions caused by the above two treatment directions is attributed primarily to the alteration of the energy absorbed by domains from the external magnetic field, which part of energy can arouse plastic deformation in microstructures by the motion of domain walls.  相似文献   

13.
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.  相似文献   

14.
Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped (x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface morphology, leakage current, ferroelectric properties, and optical properties of BiFeO3- based thin films were investigated. The substitution of Nd3+ ions for the Bi3+ site converts the structure from rhombohedral to coexisting tetragonal and orthorhombic. Nd doping improves the crystallinity of BiFeO3 thin films. The leakage current of Nd-doped BiFeO3 decreases by two to three orders of magnitude compared with that of pure BiFeO3. Among the samples, 15% Nd-doped BiFeO3 exhibits the strongest ferroelectric polarization of 17.96 μC/cm2. Furthermore, the absorption edges of Bi1-xNd x FeO3 thin films show a slight red-shift after Nd doping.  相似文献   

15.
α-MoO3 nanobelts/carbon nanotubes (CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts /CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/ CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts /CNTs composites can be attributed to the effects of the high conductive CNTs network.  相似文献   

16.
We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2, SrN2 and BaN2. The ground state properties of three alkaline earth diazenides were obtained, and these were in good agreement with previous experimental and theoretical data. By using the quasi-harmonic Debye model, the thermodynamic properties including the debye temperature Θ D, thermal expansion coefficient α, and grüneisen parameter γ are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa, respectively. The optical properties including dielectric function ε(?), absorption coefficient α(?), reflectivity coefficient R(?), and refractive index n(?) are also calculated and analyzed.  相似文献   

17.
c-axis-oriented SmBa_2Cu_3O_7(SmBCO) films have been deposited on(100)- LaA1O_3(LAO)substrate by metal organic chemical vapor deposition(MOCVD) technique.The effects of deposition temperature(T_(dep)) and total pressure(P_(tot)) on the orientation and microstructure of SmBCO films were investigated.The orientation of SmBCO films transformed from α-axis to c-axis with increasing of T_(dep) from 900 to 1 100℃.At T_(dep)=1 050℃,SmBCO films had c-axis orientation and tetragon surface.At P_(tot)~(dep)=400-800 Pa and T_(dep)=1 050 ℃,totally c-axis-oriented SmBCO films were obtained.The R_(dep) of SmBCO films increased firstly and then decreased with increasing P_(tot).The surface of SmBCO films exhibited tetragon morphology at 1 050 ℃ and400 Pa.Maximum thickness of SmBCO film deposited was 1.2μm at P_(tot)= 600 Pa,and the corresponding R_(dep)was 7.2 μm·h~(-1).  相似文献   

18.
This paper reports the effects of variations in the fuel composition of H2/CO/CH4 syngas on the characteristics of NO x and CO emissions in a partially-premixed gas turbine combustor. Combustion tests were conducted on a full range of fuel compositions by varying each component gas from 0% to 100% at heat inputs of 40 and 50 kWth. Flame temperature, combustor liner temperature, ignition delay time, and flame structure were investigated computationally and experimentally to judge whether they are significant indicators of NO x and CO formation. The characteristics of and reasons for NO x and CO emissions were investigated by analyzing the emission mechanisms and relationships among fuel property, equivalence ratio, flame temperature, liner temperature, flame shape. The flame structures were investigated using the following flame visualization methods: (1) time-averaged OH* chemiluminescence and its Abel-deconvolution; (2) direct photography; and (3) instantaneous OH-PLIF. The flame structures were greatly changed by the fuel composition and heat input, and they were subjected to key affecting parameters of the temperatures of the flames and the liners. NO x and CO emissions also largely varied according to fuel composition and heat input, showing neither linearly nor exponentially clear proportional trends toward the syngas compositions because of the singular conditions. For example, only the 100% CO flame at low load emitted lots of CO, whereas complete combustion was observed in other cases. However, the qualitative observations showed that the root causes of NO x emission behaviors were flame temperature and flame structure, which were directly related to the residence time in the flame. Various sets of practical test results were obtained, and these results could contribute to the optimal selection of the fuel-feeding condition when fuel is changed from natural gas to syngas in order to minimize NO x and CO emissions with stable combustion.  相似文献   

19.
The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, with the help of a variety of analytical techniques. The results show that carbonate deposits along the x-axis direction of the cracks. The farther from the crack surfaces of concrete matrix in x-axis direction, the more the content of the substrate, the less content of calcium carbonate. Gradual accumulation of calcium carbonate along the y-axis direction is like building a house with bricks. Different repair points are gradually connected, and ultimately the whole of cracks are completely filled. In the z-axis direction, calcium deposits on the surface of fracture direction, when the crack is filled on the surface, because the internal crack hypoxia in the depths of cracks hardly produces calcium carbonate.  相似文献   

20.
The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time observations show the tungsten tip ‘swallow' carbon atoms of the FLG and ‘spit' graphite shells at its surface. The tip was carbonized to tungsten carbide(WC, W_2 C and WC_x) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WCx-W contact, which results in significant improvement on electrical conductivity at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号