首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operational Runyang Yangtze River Bridge(the suspension bridge part).Function optimization fitting and error analysis of the test data were conducted.A temperature gradient distribution curve applicable to a hexagonal flat steel box girder was proposed.Based on the measurement results,the temperature effect of an orthotropic flat steel box girder was analyzed using finite element method and the effects of different temperature gradient modes on the mechanical characteristics and stress distribution of the steel box girder were compared.Under sunny conditions,heat conduction in the flat steel box girder structure shows distinct "box-room effect" characteristics,and the actual temperature gradient distribution is inconsistent with the one suggested by the existing standards.The thermal stress of a steel box girder calculated from the measured temperature gradient mode exceeds that calculated from the standard,and the intensity approximates that under the action of designed vehicle loads.The temperature-induced stress is distributed centrally near the manufacturing welds of the orthotropic steel box girder,which should be considered in design,construction and research.Results from this study could supplement the existing bridge and culvert design standards.  相似文献   

2.
Based on heat transfer theory,a two-dimensional complex exponential function was used to compute heat of concrete hydration.A concrete box girder consisting of a single box with two cells used on Harbin Songpu Bridge was measured on site.The two coefficients in the complex exponential function were determined to best fit the field measured data.ABAQUS program was used to simulate the heat transfer and determine the temperature distribution in the concrete box girders during concrete setting.The calculated temperature distribution in the box girders were compared with the field measured data and good agreement was observed.The temperature distribution and gradient in the entire box section,webs and bottom slab were analyzed using the measured and calculated results during the course of concrete hydration.  相似文献   

3.
The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.  相似文献   

4.
The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.  相似文献   

5.
Based on transient temperature field theory of heat conduction, the solar temperature field calculation model of U-shape sectioned high-speed railway cable-stayed bridge under actions of concrete beams and ballast was established. Using parametric programming language, finite element calculation modules considering climate conditions, bridge site, structure dimension and material thermophysical properties were compiled. Six standard day cycles with the strongest yearly radiation among the bridge sites were selected for sectional solar temperature field calculation and temperature distributions under different temperature-sensitive parameters were compared. The results show that under the influence of sunshine, U-shape section of the beam shows obvious nonlinear distribution characteristics and the maximum cross-section temperature difference is more than 21℃; the ballast significantly reduces sunshine temperature difference of the beam and temperature peak of the bottom margin lags with the increase of ballast thickness; the maximum cross-section vertical temperature gradient appears in summer while large transverse temperature difference appears in winter.  相似文献   

6.
S.  O.  Bamaga  M.  Md.  Tahir  T.  C.  Tan S. Mohammad  N.  Yahya  A.  L.  Saleh M. Mustaffar  M.  H.  Osman  A.  B.  A.  Rahman 《中南工业大学学报(英文版)》2013,(12):3689-3696
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.  相似文献   

7.
The numerical simulation model for predicting fast filling process of 70 MPa type Ⅲ(with metal liner) hydrogen vehicle cylinder was presented,which has considered turbulence,real gas effect and solid heat transfer issues.Through the numerical analysis method,the temperature distributions of the gas within the solid walls were revealed; adiabatic filling was studied to evaluate the heat dissipation during the filling; the influences of various filling conditions on temperature rise were analyzed in detail.Finally,cold filling was proposed to evaluate the effect on temperature rise and SoC(state of charge) within the cylinder.The hydrogen pre-cooling was proved to be an effective solution to reduce maximum temperature and acquire higher SoC during the filling process.  相似文献   

8.
Based on the free vibration test method for extracting flutter derivatives,an experiment on flutter stability of a long-span bridge under simultaneous actions of wind and rain was carried out in a wind tunnel.A separated twin-box girder section model was employed as the specimen.The flutter derivatives and critical flutter wind speed of this girder subject to both wind and rain(with various rainfall intensities,wind speeds and attack angles)were obtained,then the flutter stability of the bridge influenced by rainfall was analyzed.Experimental results showed that the flutter derivatives of this bridge depend on the angles of attack of wind flow in the wind and rain fields.Also,rainfall has great effect on three flutter derivatives(H2*,H4* and A4*)and has less effect on other three flutter derivatives(H1*,H3* and A3*).With the increasing rainfall density,the critical flutter velocity first increases and then decreases.Low density of rainfall has the effect of increasing mass,stiffness and damping on bridge decks,and higher density of rainfall has the effect of random inhomogeneous impact on bridge decks.  相似文献   

9.
To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact thermal resistance was therefore proposed with the supporting of massive numbers of collected test data.Parametric analysis was conducted subsequently towards the cross-sectional temperature distribution of CFST columns in four-side fire,in which the exposure time,width of the cross section,steel ratio were taken into account with considering contact thermal resistance.It was found that contact thermal resistance has little effect on the overall temperature regulation with the exposure time,the width of cross-section or the change of steel ratio.However,great temperature dropping at the concrete adjacent to the contact interface,and gentle temperature increase at steel tube,exist if considering contact thermal resistance.The results of the study are expected to provide theoretical basis for the fire resistance behavior and design of the CFST columns being exposure to fire.  相似文献   

10.
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.  相似文献   

11.
The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, and strength curves were measured. Two brittle zones and one plastic zone were found in the temperature range from the melting point to 600℃. Embrittlement in zone I is caused by the existence of liquid film along dendritic interfaces. Ductility loss in zone Ⅲ mainly results from precipitates and inclusions as well as S segregation along grain boundaries. Pearlite transformation also accounts for ductility deterioration in the temperature range of 700-600℃. Moreover, the straightening temperature of the test steel should be higher than 925℃ for avoiding the initiation and propagation of surface cracks in billets.  相似文献   

12.
Mathematic modeling on flexible cooling system in hot strip mill   总被引:1,自引:0,他引:1  
A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated. Based on the different cooling mechanisms, a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers. Model parameters were validated by measured data. Heat transfer models including air convection model, heat radiation model and water cooling capacity model were detailedly introduced. In addition, effects on cooling capacity by water temperature and different valve patterns were also presented. Finally, the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm. Since online application of the sophisticated CTC process control system based on these models, run-out table cooling control system has been running stably and reliably to produce resource-saving, low-cost steels with smaller grain size.  相似文献   

13.
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.  相似文献   

14.
Low-temperature sintering and properties of LTCC (low temperature co-fired ceramics) materials based on CaO-BaO-Al2O3-B2O3-SiO2 glass and various fillers such as Al2O3, silica glass, christobalite, AlN, ZrO2, MgO-SiO2, TiO2 were investigated. The results show that densification, crystallization, microstructures and dielectric properties of the composites are found to strongly depend on the type of filler. The densification process of glass/ceramic composites with various fillers is mainly from 600 ℃ to 925 ℃, and the initial compacting temperature of samples is 600 ℃. The initial rapid densification of samples starts at its glass softening temperature. LTCC compositions containing Al2O3, silica glass, AlN and MgO-SiO2 fillers start to have the crystallization peaks at 890, 903, 869 and 844 ℃, respectively. The crystallization peaks are believed as correlated to the crystallization of CaAl2SiO8, β-SiO2, Ca2Al2SiO7 and β-SiO2. The composite ceramic with Al2O3, silica glass and TiO2 ceramic have a better dense structure and better smooth fracture surface. Sample for Al2O3 has the lowest dielectric loss tanδ value of 0.00091, whereas the sample for MgO.SiO, has the highest dielectric loss tanδ value of 0.02576. The sample for TiO2 has the highest dielectric constant value of 14.46, whereas the sample for AIN has the lowest dielectric constant value of 4.61.  相似文献   

15.
In order to simplify the boundary conditions of pavement temperature field, the "Environment-Surface" system which considered the natural environment and pavement surface was established. Based on this system, the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory. Furthermore, the function forms of the initial and boundary conditions of the equations were created through the field experiments. The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function, and the explicit expression of pavement temperature field under specific constraint conditions was derived. For the purpose of analysis, the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field, and the calculation accuracy was analyzed through the comparison between measured and calculated values. Then, the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed. The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.  相似文献   

16.
The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.  相似文献   

17.
Hydrogen was produced from partial oxidation reforming of DME (dimethyl ether) by spark discharge plasma at atmospheric pressure. A plasma-catalyst reformer was designed. A series of experiments were carried out to investigate its performance of hydrogen-rich gas production. The effects of reaction temperature, catalyst and flow rate on gas concentrations (volume fraction), hydrogen yield, DME conversion ratio, specific energy consumption and thermal efficiency were investigated, respectively. The experimental results show that hydrogen concentration and the flow rate of produced H2 are improved when temperature increases from 300 ℃ to 700 ℃. Hydrogen yield, hydrogen concentration and the flow rate of produced H2 are substantially improved in the use of Fe-based catalyst at high temperature. Moreover, hydrogen yield and thermal efficiency are improved and change slightly when flow rate increases. When catalyst is 12 g, and flow rate increases from 35 mL/min to 210 mL/min, hydrogen yield decreases from 66.4% to 57.7%, and thermal efficiency decreases from 35.6% to 30.9%. It is anticipated that the results would serve as a good guideline to the application of hydrogen generation from hydrocarbon fuels by plasma reforming onboard.  相似文献   

18.
By analyzing the mechanical properties, composition of hydrates, content of Ca(OH)2 and microstructure of the complex binder of silica fume-Portland cement, which cured at constant low temperatures (+5--10 ℃), the effect of different low temperatures on hydration performance of the complex binder at the age of 3, 7 days and 14 days was researched. Experimental results show that hydration processes of the complex binder can be restricted by low temperature. Reducing the curing temperature could cause compressive strength and flexural strength of the complex binder to decrease significantly. The gradient difference between strength diminishes, content of Ca(OH)2 in hydrates reduces, and compactness of the microstructure weakens. Therefore mixing with silica fume can modify various performance indicators of the complex blinder, but reducing the curing temperature restricts the pozzolanic activity of silicon fume.  相似文献   

19.
In this work, the effect of various effective dimensionless numbers and moisture contents on initiation of instability in combustion of moisty organic dust is calculated. To have reliable model, effect of thermal radiation is taken into account. One- dimensional flame structure is divided into three zones: preheat zone, reaction zone and post-flame zone. To investigate pulsating characteristics of flame, governing equations are rewritten in dimensionless space-time ((, r/, ~) coordinates. By solving these newly achieved governing equations and combining them, which is completely discussed in body of article, a new expression is obtained. By solving this equation, it is possible to predict initiation of instability in organic dust flame. According to the obtained results by increasing Lewis number, threshold of instability happens sooner. On the other hand, pulsating is postponed by increasing Damk6hler number, pyrolysis temperature or moisture content. Also, by considering thermal radiation effect, burning velocity predicted by our model is closer to experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号