首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
主动调Q掺铥双包层光纤激光器   总被引:1,自引:0,他引:1  
利用790 nm半导体激光器作为泵浦源、声光调制器作为Q开关,将4 m长掺铥双包层D型光纤作为增益光纤,在入纤功率9.17 W、调制频率50 kHz时,获得激光器最大输出功率为1.26 W.调制频率为30 kHz时,获得单脉冲能量40μJ的脉冲激光.激光器在30~50 kHz工作时可以获得稳定的脉冲输出.讨论了在阈值入纤功率附近形成1/2、1/3调制频率脉冲及在较大泵浦功率时形成多脉冲的原因.  相似文献   

2.
采用两台大功率光纤输出半导体激光器端面泵浦两块Nd∶ GdVO4晶体,以声光Q开关作为腔内调制元件,用对称结构双晶体串接平行平面谐振腔.在注入泵浦功率为66 W,重复频率为100 kHz时,获得10 W的大功率准连续1.34 μm激光输出,斜率效率为18.3%,脉冲宽度为96 ns,激光输出光束发散角约为衍射极限的2倍.  相似文献   

3.
基于光子晶体光纤的布里渊光纤激光器   总被引:1,自引:0,他引:1  
为提高普通布里渊激光器的输出功率和激光效率,提出一种基于小纤芯光子晶体光纤(PCF)的环形腔布里渊光纤激光器.在环路中加入了掺铒光纤放大器和光滤波器,抵消了光纤环路的损耗,削减了掺铒光纤的受激辐射.实验结果表明,应用该激光器只需25 m的小纤芯PCF就可实现稳定的布里渊激光输出,并且输出激光的主要能量来源是环中的掺铒光纤放大器.与普通单模光纤相比,小纤芯PCF具有非线性效应强、布里渊增益大的特点,适合作为布里渊光纤激光器的增益介质.  相似文献   

4.
报道一种基于自反馈光注入的单频窄线宽光纤激光器。激光器采用线形腔结构,用高掺杂Er3+光纤作为增益介质,利用输出信号光分束反馈与腔内振荡激光干涉,形成折射率光栅与增益光栅共同作用选择纵模,获得稳定的1 549.85 nm单频窄线宽激光输出。在975 nm单模激光二极管(LD)抽运下,激光器的抽运阈值光功率为13 mW。当抽运光功率为112 mW时,最大输出信号光功率为30.6 mW,对应的光-光转换效率为27.3%,斜率效率为30.2%,信噪比大于50 dB。采用延时自外差方法测量线宽,当使用30 km单模光纤延迟线时,测量得到激光器的3 dB线宽为4.0 kHz。  相似文献   

5.
实验研究了布里渊单模光纤环形腔激光器(BSFRL)的输出功率、输出光谱和输出时域特性。通过对激光输出功率和光谱特性与构建激光器的光纤长度和输出耦合器的反馈耦合比关系的研究与分析发现,当构建的BSFRL的输出耦合器反馈耦合比为0.4、光纤长度为1.5 km时,BSFRL具有低泵浦阈值、高转换效率和稳定的单模激光输出,此时激光器的泵浦阈值约为3 mW,光-光转化效率为65%。通过调节偏振控制器,得到稳定的锁模脉冲输出。讨论了BSFRL的时域不稳定性并给出了相应解释。  相似文献   

6.
高功率掺镱光纤超荧光源是一种兼具荧光及激光特性的高亮度光纤光源,近年来发展十分迅速.其输出波长和光谱线宽可以在1μm波段灵活调制,连续输出的平均功率和脉冲输出的峰值功率均可达到kW量级,光束质量不逊于常规高功率激光器,在激光材料加工、高功率光谱合束等领域有着巨大的应用潜力.主要综述了高功率掺镱光纤超荧光源的发展历史、最新研究进展,最后介绍了本课题组在高功率掺镱光纤超荧光源所做的研究工作.  相似文献   

7.
理论分析了线宽对受激布里渊散射阈值的影响,使用噪声信号直接调制分布反馈半导体激光器构成可调线宽激光光源,搭建了受激布里渊散射阈值测量系统.结果表明,可调线宽激光的频谱与所使用的噪声信号的频谱类似,光谱与分布反馈半导体激光器输出光的光谱相比明显展宽.当可调线宽激光光源使用400 m V噪声信号进行调制时,长度为900 m单模光纤的受激布里渊散射阈值为616 m W,与使用DFB激光器测量的106 m W阈值相比,提高了7.6 d B.因此,可调线宽激光光源可以提高光纤的受激布里渊散射阈值,增加长距离光纤通信和光载电能传输系统中的光功率.  相似文献   

8.
利用100m非线性光子晶体光纤,以光纤光栅对作为谐振腔,研制成功了低阈值光子晶体光纤拉曼激光器.该光子晶体光纤拉曼激光器的闽值为2W,在抽运功率6.2W时,得到最大功率为1.8W.波长为1115.9nm的连续拉曼激光输出,拉曼半峰全宽为1.39nm,对应光-光转化效率29%,斜率效率41%.且在低功率连续光泵浦下观察到5级拉曼荧光.  相似文献   

9.
针对光子晶体光纤之间直接熔接损耗较大的问题.文中采用纳秒激光器作为泵浦源,通过光子晶体光纤与单模光纤HI-1060低损耗熔接的方法,研究了超连续谱的展宽过程,分析了超连续谱的产生机理.实验结果表明:泵浦源在重复频率为150kHz、泵浦功率为2.2W时,利用20m的光子晶体光纤与1m的单模光纤的熔接实现了输出功率为0.48W、光谱范围超过1100nm的超连续谱输出.  相似文献   

10.
研制了掺铒光纤形成的连续可调谐环单模光纤激光器。当使用980nm半导体激光器作泵浦源时,可调谐谱宽可达30nm(1.53~1.56μm),最大输出功率为7.6mW,带宽为0.13nm。功率稳定性优于0.05dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号