首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
针对外伸端板连接中,端板加劲肋设计无规可循的问题,从翼缘内外螺栓均匀受力的要求出发,考虑加劲肋传递拉力的有效性,在要求加劲节点和端板厚为21/2倍的未加劲节点刚度相等的原则下确定了翼缘和加劲肋传递拉力的合理比例,最后导出了对端板外伸加劲肋的设计要求.基于等效梁理论和刚度组件法,提出了端板外伸连接节点初始转动刚度的计算公式,与ANSYS结果和相关试验结果的比较表明,初始刚度公式精度良好,并且计算过程简单易行,有望在工程中得到应用.  相似文献   

2.
外伸端板加劲肋对连接性能的影响   总被引:3,自引:0,他引:3  
为考察外伸端板连接中不同端板加劲肋对节点性能的影响,采用接触问题的弹塑性大变形有限元分析方法,研究了钢梁柱外伸端板连接中不同长度和厚度的外伸加劲肋对节点刚度、承载力的影响,考察了端板变形和连接面受拉侧间隙的变化。研究发现,与梁腹板等厚的等边加劲肋会过早地拉剪屈服,受压侧加劲肋则过早屈服和屈曲。斜角为63.4°,加厚的加劲肋能增大节点的抗弯力臂,减小螺栓拉力,延迟梁受压翼缘的局部屈曲,并能够将梁端塑性铰移向加劲肋的尾部,从而明显提高端板连接节点的强度和刚度。  相似文献   

3.
不同构造端板连接中高强度螺栓受力特性研究   总被引:3,自引:0,他引:3  
通过4个不同构造钢结构梁柱端板连接试件在单调荷载下的破坏试验,研究了不同构造端板连接中高强度螺栓的受力特性,给出了螺栓拉力一荷载、螺栓弯矩一荷载变化曲线以及螺栓拉力分布状态,研究了节点形式、端板加劲肋、节点域柱腹板加劲肋等因素对螺栓受力特性的影响.试验结果表明:受拉区螺栓同时承受拉力和弯矩、端板加劲肋和柱腹板加劲肋对螺栓拉力发展变化和分布状况影响较大;不同的节点计算模型适用于不同的节点构造.  相似文献   

4.
加劲肋对端板连接滞回性能的影响   总被引:1,自引:0,他引:1  
为了探讨梁柱端板连接的滞回性能,进行了8个节点试件的循环加载试验,其中涉及到加劲肋作用的有5个,试验中柱端施加了轴向压力。试验结果表明:加劲肋不但可以提高节点刚度和承载力,改善滞回性能,而且可以延缓梁翼缘与端板间焊缝的开裂,减小撬力;端板连接具有良好的延性和耗能能力,节点的转角都超过了0.03rad。最后根据试验结果提出了设计和施工建议。  相似文献   

5.
梁柱外伸端板连接螺栓受力分析   总被引:1,自引:0,他引:1  
目的 研究钢结构梁与柱之间外伸式端板连接中摩擦型高强螺栓的受力特性.方法 采用考虑接触和螺栓预拉的非线性有限单元法对不同构造的梁柱外伸端板连接进行分析.结果 得到了连接中各螺栓所受拉力与外荷载之间的关系.受压区螺栓拉力变化不大,受拉区螺栓拉力随着弯矩增加而增大.结论 在整个加载过程中梁受拉翼缘内、外侧螺栓所受拉力相差不大.因端板变形产生的撬力增大螺栓受力.对于端板外伸部分未设置加劲肋和设置三角形加劲肋的连接来说,可分别按照撬力比为0.3和0.2设计螺栓.  相似文献   

6.
为研究外伸端板连接节点火灾下的破坏模式及承压加劲肋厚度对节点耐火性能及柱稳定性的影响,研究了热力耦合作用下节点的响应.采用钢结构设计理论和非线性有限元分析方法研究了节点火灾下的破坏模式、承压加劲肋的失稳及加劲肋厚度对节点耐火性能及柱稳定性的影响.结果表明:火灾下节点的破坏模式为:首先在端板和柱翼缘承拉区发生弯曲大变形,之后承压部分局部失稳并最终导致节点丧失承载力;承压加劲肋厚度对节点耐火性能有较大影响,火灾下加劲肋受到不断加大的热应力作用,但其临界应力随材料刚度退化而不断降低,较薄的承压加劲肋易发生失稳并引发柱腹板局部屈曲导致节点失效.适当增加承压加劲肋厚度可防止加劲肋的屈曲并有利于柱火灾下的稳定.  相似文献   

7.
为研究T形件连接中端板加劲肋的性能及对节点刚度和承载力的影响,对3组无加劲和6组不同形状和厚度的加劲T形件试件进行了单向加载试验研究. 对节点承载力、端板相对变形、加劲肋和端板上的应变进行了测量,获得了荷载 位移曲线和关键部位的荷载-应变曲线. 考察了不同形状和不同厚度加劲肋对节点刚度和承载力的影响,给出了加劲肋的设计方法. 试验结果表明,工程中常用的端板加劲肋强度和刚度过低,达不到预想的加劲肋效果,而设计的加劲肋能够很好地满足规范所隐含的加劲肋使端板外伸部分由一边固支三边自由板变为两相邻边固支板的要求.  相似文献   

8.
门式刚架中普遍采用的端板类连接是典型的半刚性节点连接,在介绍门式刚架端板节点的形式及其受力性能的基础上,采用接触单元来模拟端板连接节点的半刚性,预应力单元来模拟螺栓的预拉力,利用ANSYS软件对门式刚架半刚接节点进行了非线性有限元分析,深入分析了半刚性节点中加劲肋、端板厚度、螺栓直径变化对其性能的影响.通过计算表明,端板半刚性连接加劲肋、端板厚度、螺栓直径变化对节点域的剪切性能和梁柱腹板的受力性能均有较大影响.建议在设计中应采取相应措施,考虑节点半刚性的不利影响.  相似文献   

9.
采用三维非线性有限元分析的方法,讨论了钢结构外伸端板中节点的抗火性能,研究了端板厚度和柱加劲肋对节点抗火性能的影响。通过分析,得出了节点在同一荷栽不同温度下的温度-转角曲线。最后根据分析结果提出了设计和施工建议。  相似文献   

10.
采用三维非线性有限元分析的方法,讨论了钢结构外伸端板中节点的抗火性能,研究了端板厚度和柱加劲肋对节点抗火性能的影响.通过分析,得出了节点在同一荷载不同温度下的温度-转角曲线.最后根据分析结果提出了设计和施工建议.  相似文献   

11.
为了改善可更换结构体系中可更换耗能构件的受力性能,提出一种梁端端板螺栓+加强板连接构造的可更换耗能梁构件。设计并制作了2个足尺的剪切屈服型可更换耗能梁试件,对其进行拟静力反复加载试验,并采用ABAQUS软件进行有限元模拟分析,探讨梁端连接构造对可更换耗能梁破坏模式、承载力、梁端塑性应变等特征的影响。试验结果表明:试件的破坏模式为腹板-加劲肋焊缝断裂或翼缘-端板焊缝断裂,试件具有良好的承载力和耗能能力;梁端加强板构造能有效转移梁端翼缘-端板焊缝区域的塑性应变,避免构件提前发生翼缘-端板焊缝断裂,导致无法满足其变形和震后可更换需求;有限元模拟结果与试验结果吻合较好,验证了有限元模型的有效性。对5类梁端加强板构造模型进行非线性分析,结果表明,该类梁端构造均能改善梁端翼缘-端板焊缝区域应力集中现象,优化其受力特征。提出可更换耗能梁梁端端板螺栓+加强板构造的设计方法,并通过有限元模型验证了其可行性。  相似文献   

12.
腹板加劲肋对空翼缘梁LHFB承载能力的影响   总被引:1,自引:0,他引:1  
为改善空翼缘梁LHFB的受力性能,对LHFB设置了横向加劲肋.考虑几何非线性与材料非线性的影响,利用有限元软件ANSYS计算其在3种不同荷载作用下的承载力.研究加劲肋厚度、连接形式、加劲肋数量、端部加劲肋对LHFB承载力的影响.分析结果表明,对LHFB设置横向加劲肋,能有效的抑制空翼缘梁LHFB畸变屈曲的发生,提高构件的承载力.建议对LHFB加设横向加劲肋时,加劲肋厚度按bs/15选取,并且与翼缘和腹板全部焊接.在纯弯状态和均布荷载作用下沿梁长均匀布置两道加劲肋,在跨中集中力作用下在跨中位置布置一道加劲肋.  相似文献   

13.
为研究T型加劲肋长度对箱型节点性能的影响规律并确定合理的加劲肋长度,对T型外部补强箱型柱—工字梁节点进行弹塑性分析.采用ANSYS有限元方法,分析了T型外部补强节点应力发展趋势,进行了加劲肋长度对箱形柱—工字梁节点性能影响的参数分析,根据节点的设计标准确定了T型外部补强节点合理的加劲肋长度.研究结果表明:采用T型加劲肋时,塑性铰外移到梁翼缘与加劲肋连接端部,节点初始刚度和极限承载力有很大的提高;节点的弯矩传递路径由梁翼缘中部逐渐向梁两侧的加劲肋传递,并通过加劲肋有一部分弯矩传递给柱,从而节点变形大大减小.增大加劲肋长度有利于梁端弯矩通过加劲肋向柱腹板传递,但加劲肋过长时,柱腹板承担过多的应力,梁柱翼缘连接处容易局部屈服,最终确定当加劲肋长度取腹板对角线与梁翼缘夹角在10°~15°时为合理的加劲肋长度.  相似文献   

14.
为加强梁柱端板螺栓连接部位的柱翼缘和柱腹板,采用有限元法对梁柱端板螺栓连接部位进行了细致分析,提出了柱翼缘贴板,贴板与柱翼缘焊接的方法,给出了贴板厚度的计算公式;且贴板可以很好的消除螺栓周围柱翼缘的弯曲冲切变形,达到与加厚节点区柱翼缘同样的效果.设计了柱腹板"Morris"加劲肋能够同斜向对角加劲肋一样,大幅度减小节点域剪切变形,且不影响螺栓的排列.柱翼缘加贴板可以取代加厚节点区柱翼缘,节点域柱腹板可采用"Morris"加劲肋加强.  相似文献   

15.
螺旋楼梯是空间螺旋板结构,其截面常设计成T型截面,计算时按空间梁方法进行分析,通常不考虑翼缘对计算结果的影响.本文利用螺旋板单元分析了两端固定约束的螺旋板的T型截面翼缘影响.与空间梁的结果比较表明,目前所流行的不计翼缘刚度影响的空间梁方法控制螺旋板截面设计是不甚合理的。因为其设计控制截面最小的计算误差也大于10%,翼缘的影响是不可忽视的.  相似文献   

16.
为确保墙板内置无黏结支撑钢框架结构大侧移下利用内置支撑大幅屈服耗能,而钢框架在支撑连接区域处于弹性,通过有限元分析重点考察了支撑形式、支撑连接位置等对连接区域传力机制的影响,以及框架在连接处的加强构造.分析表明,1/50侧移角范围内时,梁端贴板加强后加强段基本处于弹性,非加强梁段的塑性铰位置与加强段端部间水平距离约为梁高的一半,塑性铰处翼缘轻微屈曲或无屈曲时钢梁截面的最大弯矩均接近塑性弯矩.据此,再结合支撑的连接位置和轴力便可确定出梁端内力,并进行节点域抗剪验算.分析还表明,节点域两侧的梁端弯矩按翼缘和腹板的抗弯刚度比例分配后传给节点域,而不是按现行设计规范中仅通过两翼缘的方式进行传递.节点域的柱腹板在剪切屈服后剪切变形大幅增加,增大了结构层间侧移.基于分析结果,给出了钢梁翼缘和腹板以及节点域柱腹板的贴板厚度等设计建议.  相似文献   

17.
冷弯薄壁斜卷边槽钢轴压构件的稳定性分析   总被引:1,自引:0,他引:1  
为研究冷弯薄壁斜卷边槽钢轴压构件的稳定性能,选取了两种翼缘外廓尺寸(B=55 mm和B=80 mm)、七种卷边弯起角度(θ分别为30°、45°、60°、90°、120°、135°、150°)、三种板厚(t取为1.0、2.0和3.0 mm)、六种试件长度(L以0.5 m为间隔,由0.5 m起变化到3 m止)、简支和固支两种边界条件,对共计504个算例进行了轴心受压状态下的非线性有限元分析.研究了上述参数对斜卷边槽钢轴压构件稳定性能的影响.结果表明,θ对弹性畸变屈曲临界力影响显著,且对轴心受压简支构件而言,θ为钝角时能够有效地避免畸变屈曲的发生,若θ为30°构件的破坏模式不由畸变屈曲控制时,则其承载力最大;轴心受压固支柱比简支柱更容易出现畸变屈曲,且斜卷边槽钢大多不及相同条件下直角卷边槽钢的承载力.  相似文献   

18.
钢结构中H型钢柱翼缘与梁常采用端板式高强螺栓刚性连接节点,计算所需的梁端板厚度通常比与其连接的柱翼缘部分的厚度大,柱翼缘部分必须进行补强设计。文献[3]推导出补强板厚度的计算公式,但补强系数的确定方式较粗略。文中采用遗传算法确定了补强系数的最优值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号