首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以三氯化铁为氧化剂,通过原位聚合法制备聚乙撑二氧噻吩/多壁碳纳米管复合材料.热重分析结果表明:聚乙撑二氧噻吩/多壁碳纳米管复合材料相对于聚乙撑二氧噻吩具有更好的热稳定性;采用傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)对产物的结构与形貌进行表征,聚乙撑二氧噻吩在多壁碳纳米管表面形成了均匀的包覆层,两者之间存在一定的界面作用.在1 mol/L氯化钾(KCl)溶液中,采用循环伏安测试法(CV)研究样品的电化学性能,聚乙撑二氧噻吩/多壁碳纳米管复合材料的比电容可达139.8 F/g.  相似文献   

2.
以过硫酸铵为氧化剂,三氯化铁作为掺杂剂,采用原位聚合法制备石墨烯/聚乙撑二氧噻吩纳米复合材料.通过扫描电镜(SEM)、透射电镜(TEM)、红外(IR)光谱对样品的形貌及结构进行表征.结果表明:聚乙撑二氧噻吩纳米颗粒在石墨烯片层上呈均匀分散状态.循环伏安测试法(CV)等电化学测试表明:随着石墨烯质量分数的增加,纳米复合材料电极的电化学性能随之改善,当石墨烯的质量分数为50%时,石墨烯/聚乙撑二氧噻吩纳米复合材料的比电容达到168.8 F/g,显示出较好的电化学活性.  相似文献   

3.
为了进一步实现其他材料与聚吡咯的性能互补与优化,先以甲基橙为掺杂剂,过硫酸铵为氧化剂,采用软模板法制备具有一维纳米结构的聚吡咯,再利用水热法制备二氧化锰/碳纳米管复合材料,最后将二氧化锰/碳纳米管复合材料与聚吡咯进行混合处理,改变复合材料中二氧化锰/碳纳米管复合材料和聚吡咯微米管的含量,得到了3种不同比例的二氧化锰/碳纳米管/聚吡咯复合材料. 采用扫描电子显微镜测试观察所得产物的微观形貌,通过X-射线粉末衍射仪测试其结构与组成,最后通过电化学工作站测试分析复合物的电化学性能与循环稳定性. 结果表明,二氧化锰/碳纳米管/聚吡咯复合材料在微观上复合均匀,电容性能比单独的聚吡咯或二氧化锰/碳纳米管复合材料量有显著改善.  相似文献   

4.
将纳米VO2粉体与聚3,4-乙撑二氧噻吩复合,制备出一种新型的负电阻温度系数特性的聚合物基复合材料。通过计算复合膜简化模型的等效电阻网络,结果表明串联电阻结构有利于复合膜表现出高电阻相二氧化钒的电阻温度特性。同时,由于掺杂过的VO2粉体相和聚3,4-乙撑二氧噻吩导电聚合物相的共同作用,这种复合膜的电阻随温度变化量可达到一个数量级以上。最后,给出了复合膜的扫描电子显微镜图像结构。  相似文献   

5.
钼氧化物/聚合物同轴纳米线的制备与表征   总被引:1,自引:0,他引:1  
利用水热法首先合成三氧化钼纳米线,然后通过原位聚合法在三氧化钼纳米线表面分别进行导电聚合物聚吡咯(PPy)、聚噻吩(PTh)和聚乙撑二氧噻吩(PEDOT)的包覆,而得到三氧化钼/聚合物同轴纳米线的方法,并利用X射线衍射、傅里叶变换红外光谱、扫描电子显微镜、紫外可见光谱等手段对其进行了表征和分析,结果表明,聚合物包覆后的同轴纳米线形貌保持良好,并在光电效应应用方面有着较大潜力。这种原位聚合的方法同样可以被应用于其他聚合物包覆结构材料的合成。  相似文献   

6.
为了改善碳纤维与树脂基体之间的界面性能,以噻吩为单体,采用循环伏安法对碳纤维进行电化学聚合改性.利用扫描电子显微镜研究了电化学聚合改性前后碳纤维的表面结构变化,采用电脑伺服控制材料试验机测试了碳纤维增强环氧树脂复合材料的力学性能.结果表明,当噻吩浓度为0.4 mol/L时,峰值电流增加幅度最大,电聚合效果最佳.当循环次数达到60次时,碳纤维表面电化学聚合反应完全,碳纤维/环氧树脂复合材料的层间剪切强度可由13.46 MPa增加到23.79 MPa,提高约76.75%.电化学聚合后大量片层状聚噻吩聚合物在碳纤维表面聚集,碳纤维与环氧树脂基体紧密结合,界面性能明显提高.  相似文献   

7.
以RuCl3.nH2O为原料通过溶胶-水热法制得纳米RuO2粒子,然后在RuO2溶胶体系中通过常规的化学氧化法由苯胺氧化聚合制备纳米RuO2/聚苯胺复合材料,采用扫描电镜(SEM)和X-射线衍射(XRD)对其形貌和微观结构进行表征,并用循环伏安法研究了不同RuO2质量分数的复合材料电极的电化学性能。结果表明,RuO2质量分数为5%时,RuO2/聚苯胺复合材料形成致密的表面包覆型结构,聚苯胺电化学电容消失,复合材料电极电容很小。RuO2质量分数大于或小于5%时,RuO2粒子呈弥散状分布在聚苯胺中;RuO2质量分数为3%时,复合材料比电容达到极值374.6 F/g,这种复合材料具有很好的电化学特性,适于用作超级电容器电极。  相似文献   

8.
为了改善碳纤维与树脂基体之间的界面性能,以噻吩为单体,采用循环伏安法对碳纤维进行电化学聚合改性.利用扫描电子显微镜研究了电化学聚合改性前后碳纤维的表面结构变化,采用电脑伺服控制材料试验机测试了碳纤维增强环氧树脂复合材料的力学性能.结果表明,当噻吩浓度为0. 4 mol/L时,峰值电流增加幅度最大,电聚合效果最佳.当循环次数达到60次时,碳纤维表面电化学聚合反应完全,碳纤维/环氧树脂复合材料的层间剪切强度可由13. 46 MPa增加到23. 79 M Pa,提高约76. 75%.电化学聚合后大量片层状聚噻吩聚合物在碳纤维表面聚集,碳纤维与环氧树脂基体紧密结合,界面性能明显提高.  相似文献   

9.
将化合物1,5-二羧基(3,4)-1,4-二氧亚乙基噻吩2′-甲醇在铜氧化铬混合催化剂催化下经高温脱羧合成出(3,4)-1,4-二氧亚乙基噻吩2-甲醇,利用核磁碳谱和氢谱结合二维核磁(同核相关和异核相关)分析了化合物的结构共振图谱表明:(3,4)-1,4-二氧亚乙基噻吩2-甲醇在合成过程中生成了六圆环.本研究第一次证明了该化合物的结构.  相似文献   

10.
对氧化石墨烯(GO)和碳纳米管(CNT)进行磺化处理,得到的磺化石墨烯(SG)和磺化碳纳米管(SCNT)在溶液中有良好的分散性。将SG、SCNT和氧化剂溶于水中形成水相,聚吡咯(PPy)单体溶于有机溶剂中形成有机相。有机相与水相之间发生界面反应,得到PPy/SG/SCNT复合材料。采用扫描电子显微镜、X射线衍射、电化学工作站对复合材料进行表征与测试。结果表明:PPy/SG/SCNT复合材料组分复合均匀,是无定形材料,其电化学性能较单独的PPy、SG或SCNT更优越,而且当正己烷作为有机溶剂时,所得到的三组分复合材料更适合作为超级电容器电极材料。  相似文献   

11.
以原位聚合法制备了导电聚合物聚苯胺/聚3,4-乙烯二氧噻吩(PANI/PEDOT)复合阳极材料.研究了复合乳化剂浓度对PANI/PEDOT复合阳极材料的电化学性能和结构的影响.用线性扫描、交流阻抗、傅里叶变换红外光谱和x-射线衍射对所得的复合阳极材料的电化学特性、物相和结构进行了表征.结果表明,当复合乳化剂浓度为0.2mol/L时,PANI/PEDOT复合阳极材料具有较好的导电性,所得复合材料的分子链有序性较好,结构规整,结晶性好.  相似文献   

12.
以天然鸡蛋膜(ESM)为基底,制备了一种具有良好电容性能的碳化鸡蛋膜/碳纳米管(CNTs)/二氧化锰(MnO2)(cESM/CNTs/MnO2)复合材料电极。首先将CNTs吸附到ESM上,通过碳化得到cESM/CNTs,再将其与高锰酸钾(KMnO4)通过氧化还原反应,在cESM/CNTs上生成MnO2纳米颗粒,最终得到cESM/CNTs/MnO2复合材料。采用X射线衍射、扫描电子显微镜表征复合材料的微观形貌与结构,通过循环伏安法和计时电位法测试了cESM/CNTs与KMnO4的质量比不同时制备得到的cESM/CNTs/MnO2复合材料的电化学性能。实验结果表明:在当cESM/CNTs与KMnO4的质量比为1∶4时,cESM/CNTs/MnO2复合材料展现出优异的电容性能,并且在扫描1 000圈后,复合材料的容量保持率高达93.4%。  相似文献   

13.
为了研发高性能的锂离子电池负极材料,采用水热法合成了Bi2S3-MoS2/石墨烯复合材料,利用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、热重分析(TGA)和X-射线光电子能谱(XPS)对复合材料进行表征,讨论复合材料的微观结构对电化学储锂性能的影响. 特别是,当Bi与Mo的物质的量之比为1∶4时,Bi2S3-MoS2/石墨烯的电化学储锂可逆比容量可以达到1 140 mA·h/g,并具有稳定的循环性能. 当充放电电流密度为1 000 mA/g时,其高倍率特性为886 mA·h/g. Bi2S3-MoS2/石墨烯复合材料优异的电化学储锂性能主要由于MoS2具有更少的层数和较多的边缘以及Bi2S3纳米粒子具有更均匀的粒径,并能很好地分散在石墨烯表面,增强了复合材料容纳锂离子的能力,改善了储锂电极过程的动力学性能.  相似文献   

14.
以浮动催化化学气相沉积法生长的碳纳米管薄膜为主体,以高密度聚乙烯为修饰材料,采用溶液等温结晶工艺,制备内部为纳米混合杂化串晶结构的碳纳米管/高密度聚乙烯复合薄膜,并探究该结构产生的互锁效应对薄膜性能的影响机理.通过调节该结构的主要参数,即高密度聚乙烯片晶长度与周期距离,实现互锁效应的优化.研究结果表明,碳纳米管/高密度聚乙烯复合薄膜断裂应力为117.69 MPa,应变为52.85%,比原始碳纳米管薄膜提升了40%与270%.这种工艺方法为高性能纳米复合材料的制备提供了可能.  相似文献   

15.
为了研究聚乙烯/水滑石(PE/LDH)复合材料的制备方法,利用重构法制备了十二烷基硫酸钠改性的水滑石(SDS-LDH),并以聚乙烯(PE)为基体,以接枝聚乙烯(PEgMA)为相容剂,采用溶液法和熔融法制备PE/PEgMA/SDS-LDHs复合材料.利用扫描电子显微镜(SEM)、X-射线衍射(XRD)和热重分析(TGA)技术分别研究了水滑石在基体中的分散情况、复合材料的结构及不同制备方法对复合材料的热降解过程的影响.研究表明:采用熔融法和溶液法与熔融法相结合的手段分别获得了微米复合材料(PE/PEgMA/SDS-LDH)和纳米复合材料(PE/(PEgMA/SDS-LDH));由于SDS-LDH的热分解温度较低,复合材料均表现出较低的初始热降解温度,相比于微米复合材料,纳米复合材料表现出较高的热稳定性;其最大热降解速率相应的温度及其热降解成炭均有所提高.  相似文献   

16.
表面增强拉曼散射光谱(SERS)因具有高灵敏及无损检测的特点,在化学检测领域受到广泛关注. 采用原位化学还原法,制备氧化石墨烯/金/银(GO/Au/Ag)复合材料,利用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、紫光—可见分光光度计(UV)等手段对复合材料结构进行表征,并深入研究不同Au/Ag比例对纳米复合材料形貌和SERS的影响. 以罗丹明6G (R6G)为探针分子,研究纳米复合材料的形态对表面增强拉曼散射的影响. 研究结果表明GO/Au/Ag复合材料具有良好的SERS增强效果,且SERS信号强度与样品表面形貌以及Au、Ag含量(质量分数,全文同)有关. Au/Ag纳米颗粒表面粗糙度以及Au、Ag含量的提高可以显著增加GO/Au/Ag复合材料的SERS效果.  相似文献   

17.
金属纳米颗粒和碳纳米管是两种重要的纳米材料,要实现碳纳米管的大批量制备,必须首先解决催化剂连续投放问题和催化剂与产物及时导出的问题.通过特殊的反应装置和工艺可以实现碳纳米管的连续制备,从而达到低成本大批量制备碳纳米管的目的.本文采用一个简单的方法合成了铁钴(Fe/Co)纳米颗粒,并采用化学气相沉积法实现了碳纳米管的批量合成,纳米颗粒的尺寸分布均匀,碳纳米管管径均匀、高纯度、结构完美.合成的碳纳米管机械强度高,同时还有独特的金属或半导体导电性.  相似文献   

18.
为了评估纳米复合相变材料在相变储能式热管理技术中的应用潜力,采用实验方法研究碳纳米管填料对相变储能式电子器件热沉瞬态性能的影响.选用十六醇为基底相变材料,以多壁碳纳米管为填料制备了不同质量分数(0.3%、1%和3%)的纳米复合相变材料,对复合相变材料的关键热物性进行表征.在短时较高热流密度(高达7.0 W/cm2)加热条件下,比较热沉(分为有翅片和无翅片2种结构)的瞬态性能随纳米复合相变材料中碳纳米管质量分数的变化规律.实验结果表明,在添加了碳纳米管填料之后热沉的性能较采用纯十六醇的工况有所削弱.虽然加入碳纳米管后纳米复合相变材料的导热系数有所提升,但黏度的急剧增加极大地削弱了熔化过程中的自然对流效应,从而抵消了导热强化所带来的性能提升.  相似文献   

19.
采用均相沉淀法分别制备了α-Ni( OH)2和α-Ni( OH)2/GO复合材料,并对其微观结构和电化学性能进行了考察。 XRD分析表明α-Ni(OH)2/GO 复合材料层间距更大; FT -IR 表明α-Ni(OH)2/GO复合材料中NO3-振动吸收峰峰形逐渐宽化、强度减弱; FESEM图像表明α-Ni(OH)2/GO复合材料结构更加致密。采用CV、 EIS和充放电测试表征了合成样品的电化学性能,发现α-Ni(OH)2/GO复合材料具有相对较低的阻抗、较好的循环稳定性和较高的放电比容量。  相似文献   

20.
为了研发高效低成本的析氢反应(HER)电催化剂和高性能的电化学储锂电极材料,通过一步水热法制备MoS2/硼掺杂石墨烯(MoS2/BG)复合材料. 结果表明,少堆积MoS2纳米片均匀地分散在硼掺杂石墨烯上,并具有较多的无序结构和扩大的层间距. 作为析氢反应电催化剂,MoS2/BG复合材料表现出较高的电催化活性和较低的Tafel斜率(46.3 mV/dec);作为电化学储锂电极材料,MoS2/BG复合材料表现出优异的电化学储锂性能,可逆比容量为1 205 mA·h/g,并具有稳定的循环性能和显著增强的高倍率特性. MoS2/BG复合材料电化学性能优异是由于硼掺杂改变石墨烯的电子性质和表面特性,以及无序结构较多的弱堆积MoS2层均匀地分散在硼掺杂石墨烯表面,增加电催化析氢反应的活性位点和电化学储锂能力,降低电极反应的电子转移阻抗,增强电极反应的动力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号