首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
ASR驱动防滑系统是汽车上的一种新型安全装置,可以控制汽车在起动和加速时的驱动轮滑转率,充分利用纵向附着系数和横向附着系数。通过分析欧美日ASR液压系统的结构、工作过程,总结其特点,提出对液压系统的改进措施。  相似文献   

2.
首先阐述前驱液压混合动力汽车的工作原理,并应用SimulationX软件对其制动过程进行了仿真,然后引入能量回收强度的概念,对汽车的制动性能进行了理论分析.结果表明:该液压混合动力汽车能短时间内有效地回收车辆的制动能量,且制动过程平稳;相对于传统车辆,液压混合动力汽车具有较大的同步附着系数,提高了车辆制动时的方向稳定性,在较大附着系数路面上制动时,路面的附着条件发挥得更充分,但在附着系数小于γ0的极端路面上,不适合采用液压系统回收车辆的制动能量.  相似文献   

3.
为提高前轮驱动车辆在低附着或对开路面上的加速性能,设计了基于节气门与制动干预联合控制的驱动防滑系统.车速较低时选择前后轮速差作为ASR控制量,车速稍高时选择驱动轮滑转率作为ASR控制量.应用扭矩传感器测试了低附着路面的最佳滑转率,设计了基于车轮滑转程度的ASR工况识别方法,开发了针对低附着和对开路面的节气门与制动干预联合控制逻辑,进行了基于捷达GTX轿车的实车试验.试验结果表明,该系统控制逻辑合理,能够对工况做出准确识别,车速较低时将前后轮速差控制在7km/h内,车速稍高时将驱动轮滑转率控制在20%附近,提高了车辆的加速性能.  相似文献   

4.
阐述了汽车驱动防滑控制技术的理论基础,论述了ASR系统的控制途径和控制策略,并对国内外ASR技术研究的现状和研究水平进行了较为详细的阐述,在此基础上还介绍了一些目前在ASR领域的新技术、新理论以及在某些方面的最新进展.  相似文献   

5.
电动轮驱动汽车的最佳车轮滑移率实时识别   总被引:1,自引:0,他引:1  
根据汽车轮胎与路面的附着特性及电动轮驱动系统的特点,提出了电动轮汽车驱动轮对应最大附着系数的滑移率实时识别方法。该方法利用包括车轮驱动转矩和转速在内的车轮动力学参数表达轮胎与路面之间的附着特性。通过计算其导数变化来检测车轮滑转状态,从而获得最大附着系数所对应的滑移率。通过仿真及实车试验对本文方法进行了验证,结果表明其可实时准确地判断车轮是否打滑,并输出最佳滑移率及最大附着系数。  相似文献   

6.
在分析限滑差速器力矩传递特性基础上,建立了限滑差速器、液压控制系统和后轮驱动汽车整车动力学方程.以驱动轮滑转率和角速度差变化率为控制门限设计了控制逻辑.采用Simulink/Stateflow工具箱,设计了逻辑门限控制器.在分离附着路面上进行了整车加速性能仿真研究,结果表明,基于限滑差速器的驱动防滑控制系统能充分利用高附着路面附着力,有效抑制左右驱动轮转速差,提高车辆驱动性能.  相似文献   

7.
叙述了ACC系统和ABS/ASR系统在改善汽车高速行驶主动安全性方面的功用 ,阐述了ACC系统是ABS/ASR系统功能的延伸、逻辑的发展及它们之间的内在联系 ,指出了在ABS/ASR的基础上只需增加测距装置和添加巡航控制子程序 ,就可方便地实现ABS/ASR/ACC集成化系统 ,并给出了集成化系统的控制框图和控制方法 ,论述了ABS/ASR/ACC集成化系统比孤立的ABS/ASR和ACC系统的优越性 .  相似文献   

8.
针对汽车在左右两侧车轮附着系数明显不同的情况下,直线加速行驶时,易出现摆尾等失控现象,根据电动轮式四轮驱动汽车驱动力矩独立可控的特点,提出基于PID控制算法,结合DYC-TCS控制策略,控制内、外侧车轮的驱动力矩,实现整车操纵稳定性最优.在Adams/View中建立了四轮驱动汽车的模型,与Simulink进行了联合仿真.结果表明:汽车在左右两侧车轮附着系数明显不同的情况下,进行直线加速试验时,采用DYC-TCS控制策略,明显优于传统的无DYC-TCS控制策略的方案,也优于仅有TCS控制的方案.采用DYC-TCS策略后,最大横摆角速度仅为传统的无DYC-TCS控制策略方案的4%,最大侧向位移仅为5%.  相似文献   

9.
针对路面信息对于汽车主动安全系统的重要性,提出一种基于先进汽车线控转向系统的轮胎与路面附着系数估计方法。通过建立整车模型和基于卡尔曼滤波算法设计估计器,实现了不依赖于制动系统的前、后车轮路面附着系数估计。通过中心区转向和角阶跃试验工况验证表明,提出的估计算法可以很好地实现对路面附着系数的估计,验证了算法的有效性。  相似文献   

10.
针对轮毂驱动电动汽车电机-液压复合制动系统的协调控制问题和舒适性问题,提出了基于滑模变结构控制算法和模糊算法的控制策略,首先利用滑模算法根据车辆状态参数来计算电动汽车所需的制动总转矩,再利用模糊算法根据制动踏板行程l和电池SOC来计算液压制动和电机制动转矩分配比例。其中液压制动转矩作为汽车制动转矩中的基础制动转矩,用电机转矩调节车轮滑移率,以实现防抱死控制,并且由于液压制动轮缸的压力变化减少,制动舒适性得以提高。最后采用Matlab/Simulink、Amesim和Carsim软件联仿,分别进行高附着和低附着路面仿真,仿真结果表明复合制动系统的防抱死协调控制策略不仅有效,而且改善了ABS介入时的舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号