首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 128 毫秒
1.
混凝土中水泥水化反应放热模型及其应用   总被引:5,自引:0,他引:5  
大体积混凝土结构水化热温度场分析的关键是混凝土中水泥水化反应放热模型的确定。基于化学反应动力学原理,提出了一种物理意义明确,考虑了温度和化学反应物浓度对化学反应速率影响的混凝土中水泥水化反应放热模型,并将其应用于有限元分析。算例分析表明,该模型能很好地拟合了混凝土绝热温升的实测数据,较精确地预测了在不同浇筑温度下混凝土绝热温升的变化规律。  相似文献   

2.
在混凝土的施工中,为考虑水化热对施工和设计所造成的影响,根据有关规范、参考文献的实测数据及大体积混凝土空间有限元分析程序MASSIVE,研究了建筑工程中的混凝土水化热瞬态温度场计算过程中的水泥水化放热规律及水化速度,为数值计算分析提供了可靠的数学模型,可避免结构产生有害裂缝。  相似文献   

3.
根据实测的接驾咀特大桥系杆拱桥端横梁的水化热温度场,采用三维瞬态温度场理论,利用ANSYS有限元软件,对分二次浇筑与整体浇筑时端横梁水化热温度场和应力场的分布规律进行了分析。分析结果表明,整体浇筑时端横梁水化温升要较分层浇筑时快,采用分层浇筑方式可有效地降低大体积混凝土水化效应的温度场和温度应力。所建立的大体积混凝土水化效应的温度场和温度应力的有限元分析方法和分析结果可为施工方案的选择提供参考。  相似文献   

4.
针对高墩混凝土箱梁墩顶块水化热温度场分布状况,考虑风速的影响,建立了非稳定对流热传导模式,利用有限元程序对8种风况的混凝土箱梁水化热温度场进行分析,总结了非稳定对流模式下混凝土箱梁墩顶块水化热温度场的分布规律,利用MATLAB分布拟合温度峰值和温差峰值随风速变化的计算公式.研究结果表明:非稳定计算模式适合计算高墩混凝土箱梁墩顶块的水化热温度场;水化热温升效应明显、衰减缓慢、约48 h达到温度峰值;风速影响各个时间点的水化热温度数值,然对其变化趋势无影响,风速对温升影响小,对温度的衰减影响大;随着风速的增大,水化热温度衰减趋势逐渐降低,薄厚差异明显的结构温度衰减具有阶跃现象;当风速较大时,温度衰减变化幅度减小,有靠拢之趋势;风速对温差峰值的影响与风速对温度峰值的影响呈相反趋势;温差64 h左右达到峰值、其值约24℃;减小风速,有利于控制温差,旨在达到控制温度应力的目的.  相似文献   

5.
文章结合实际工程大体积混凝土基础,采用三维瞬态温度场理论,利用ANSYS有限元软件对整体浇筑、分层浇筑、设置水管冷却等不同施工条件下,大体积混凝土基础的温度场和应力场的分布规律进行了分析。结果表明:与整体浇筑相比,分层浇筑和加水管冷却可以有效降低大体积混凝土基础水化效应的温度场和温度应力,对指导工程实践具有重要的现实作用。  相似文献   

6.
针对高强混凝土中总胶凝材料用量较多导致水化热剧烈、从而产生裂缝的问题,对大体积高强混凝土施工过程中的温度场进行了分析.通过对模型结构进行温度监测来指导实际工程混凝土配合比设计,并对施工方案的合理性进行了研究,根据水化热试验确定大体积高强混凝土水化热的计算参数.运用有限元软件MIDAS/GEN及ABAQUS进行温度场分析,结果表明,大体积高强混凝土结构比普通大体积混凝土结构升温更快,峰值温度更高,应当加强养护;进行水化热计算时,水化热系数m及最终水化热Q0的常用值需针对大体积高强混凝土作适当调整.  相似文献   

7.
为避免预制混凝土T梁在施工养护期间产生较高的水化热而导致梁端出现早期竖向裂缝,以一座40 m预应力混凝土T梁为研究对象,对其浇筑过程水化热发展及早龄期力学性能进行监测与测试,并基于实测结果建立考虑梁段早期时变的精细化有限元模型,研究浇筑过程水化热温度场演变特征、梁端应力分布规律。结果表明:40 m跨预制T梁在混凝土浇筑初期,靠近梁端位置因水化过程中的温度迅速聚集而具有较高的开裂风险,且在距梁端2~4 m区域的腹板靠近翼缘板位置易贯通。建议控制入模温度在20℃以内并采用优化配合比的方法,减少水泥用量或采用低水化热水泥,以达到降低水化热和防止裂缝产生的目的。  相似文献   

8.
结合沁河大桥工程监控方案,针对预应力混凝土连续箱梁桥悬臂浇筑的施工特点,进行了挂篮静载预压试验.经验证:挂篮结构能够满足施工安全需要;挂篮静载预压能消除挂篮结构因拼装引起的非弹性变形.通过对挂篮预压结果与浇筑混凝土后相应块的数据对比分析,发现同一块段预压与浇筑后的沉降变形一致.分析挂篮弹性变形与预压荷载的关系曲线,发现挂篮预压与浇筑后块段弹性变形存在线性关系.对弹性变形数据进行线性拟合,得出弹性变形与预压荷载的线性关系方程式,可为预应力混凝土连续箱梁的悬臂浇筑线型控制提供依据.  相似文献   

9.
为了控制大体积混凝土的水化热温度,对控制混凝土早期裂缝提供依据,了解温度对混凝土早期力学性能的影响,采用镍铬-镍硅型热电偶传感器对混凝土内部温度场进行了实测.结果表明,混凝土浇筑初期内部温度场沿深度呈抛物线分布,最高温度为58℃,在浇筑后3 d出现,持续1 d左右,混凝土中心与表面最大温差19℃.通过实测的温度场分布情况,可以直接了解混凝土内部温度变化趋势,对控制水化热温度和温度裂缝起指导作用.  相似文献   

10.
考虑外界气温条件、水泥水化热、弹模、徐变等热力学和物理力学参数以及分层浇筑(利用生死单元实现分层浇筑)对闸墩温度应力的影响,利用ANSYS软件三维有限元法进行闸墩施工期的瞬态温度场和应力场仿真计算.结果表明:内外温差过大,内部温升温降太快是闸墩出现裂缝的主要原因,并提出了对拌合材料冷却,降低浇筑温度,采用优化的保温保湿养护方法,在混凝土内预埋冷却水管,选用低热水泥,使用减水剂等减小内外温差,减缓温升温降过程,以有效防止施工期表面裂缝的产生.  相似文献   

11.
Based on heat transfer theory,a two-dimensional complex exponential function was used to compute heat of concrete hydration.A concrete box girder consisting of a single box with two cells used on Harbin Songpu Bridge was measured on site.The two coefficients in the complex exponential function were determined to best fit the field measured data.ABAQUS program was used to simulate the heat transfer and determine the temperature distribution in the concrete box girders during concrete setting.The calculated temperature distribution in the box girders were compared with the field measured data and good agreement was observed.The temperature distribution and gradient in the entire box section,webs and bottom slab were analyzed using the measured and calculated results during the course of concrete hydration.  相似文献   

12.
预防连续箱梁施工裂缝的温度监测与有限元分析   总被引:2,自引:2,他引:0  
研究混凝土浇筑初期内部温度应力不均匀分布特征和预防温度裂缝的有效措施,以西安至铜川高速公路渭河特大桥某0#箱梁为研究对象,以MIDAS/FEA(multitier distributed applications services/finite element analysis)有限元分析软件为计算平台,采用有限单元法对施工期混凝土水化热温度场进行了数值模拟计算,分析了3种不同防裂工程措施的理论效果,并结合温度监测进行了工程措施的优化。结果表明:混凝土浇筑52h左右内部温升达到高峰,有无冷却水管的箱梁内部最高温度温差在10℃左右,在内外温差20℃左右时拆除模板时机较为恰当;箱梁腹板与横隔板交界处温度应力集中,设置冷却水管改善温度应力分布效果明显。与其他研究结果相比,采取温度监测与有限元计算全过程动态分析方法优化防裂工程措施效果较好。  相似文献   

13.
基于苏通大桥辅助航道桥运营期两年内实测的温度、气象和应变数据,对混凝土箱梁的有效温度与应变进行了分析。结果表明:箱梁的尺寸越小,有效温度变化的范围越大,设计基准期为100年的墩顶梁和跨中箱梁的有效温度范围分别为(-4.3℃,37.3℃)和(-6.1℃,42.2℃);大气前3天的最高(低)平均温度与箱梁有效温度的相关性系数高达0.97,通过回归分析得到的箱梁有效温度与大气前3天平均最高(低)温度的关系式,可用来对箱梁有效温度进行预测。最后提出了修正混凝土收缩、徐变效应的方法,并使用箱梁有效温度对主墩墩底混凝土的竖向相对应变和支座截面箱梁顶板混凝土的纵向相对应变进行了预测。  相似文献   

14.
针对由混凝土与钢材的热工参数差异显著而导致新型波形钢腹板组合箱梁温度效应突出的问题,考虑子梁微段平衡条件、子梁间变形协调条件和波形腹板剪切变形效应,建立竖向温度梯度作用下新型波形钢腹板组合箱梁相对滑移、内力和应力的理论计算方法. 对大温差地区的新型波形钢腹板组合箱型试验梁进行温度长期观测,拟合结构竖向温度梯度函数,通过该理论方法计算实测温度梯度下的结构温度响应,利用有限元模拟对本文理论进行验证. 结果表明,在实测温度梯度下,界面剪力、子梁弯矩和应力均沿梁纵向呈双曲余弦函数分布,层间相对滑移沿梁纵向呈双曲正弦函数分布. 是否考虑腹板剪切变形效应对组合梁梁端向跨中0.8 m范围的温度效应影响较大,对组合梁中部的影响可以忽略. 混凝土线膨胀系数、组合箱梁层间滑移刚度和界面温差对新型波形钢腹板组合箱梁温度效应的影响较大,在设计中应合理排布层间剪力连接件,考虑混凝土线膨胀系数的变异性对该类结构进行温度效应计算.  相似文献   

15.
大跨混凝土箱梁温度场分析   总被引:1,自引:0,他引:1       下载免费PDF全文
针对困扰工程设计的混凝土箱梁温度分布及温度应力问题,以某双线特大桥为背景,基于箱梁表面热交换平衡理论的预应力箱梁温度场数值仿真和现场实测的对比分析,以此来得到较为准确的混凝土箱梁壁厚温差的梯度模式。通过对比分析结果表明,基于箱梁表面热交换平衡理论的温度场数值仿真能客观模拟实际边界条件,具有较高的计算精度,可以很好的满足实际工程的设计分析要求,进而以温度场数值仿真为基础,利用ANSYS二次开发技术,开发出了与ANSYS风格一致的针对预应力混凝土温度场的可视化汉化模块,实例计算表明,该可视化汉化模块能很好的应用于实际,能够提高工作效率。  相似文献   

16.
为了建立混凝土箱梁的温度梯度模式,以位于浙江省千岛湖地区的一座大跨度连续刚构桥梁的温度场长期监测数据为基础,对箱梁的竖向最大正温差与环境气温之间的关系进行统计分析,建立依据日最高气温与日气温变化幅度估算混凝土箱梁竖向最大正温差的经验公式.根据极值统计理论提出箱梁的正温度梯度曲线,并与现行公路桥梁规范的温度梯度曲线进行比较.以实测气温、太阳辐射理论值为温度边界条件,根据二维热传导理论分析测试截面的理论温度场及分布特征.结果表明,现行规范的温度梯度曲线不能涵盖实测桥位地区50年一遇的气温条件,规范采用的温度梯度偏于不安全.按二维传热理论计算得到的理论温度场与实测值符合良好,理论分析能够模拟混凝土箱梁内部的温度分布特征.  相似文献   

17.
推导了混凝土水化热预冷流复合降热方程,建立了混凝土水化热预冷流模式。采用大型空间有限元程序AN-SYS,对浇注箱梁墩顶块混凝土水化热场进行时程分析,分析了温度峰值和温差峰值的时程变化规律,提出了实用计算公式。结果表明:预冷流模式可明显降低浇注混凝土的水化热温度峰值和温差峰值,缩短最大温度峰值出现的时间,而不改变温差峰值发生的时间。实用计算公式简单明确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号