首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用非饱和非稳定渗流理论,对某粘土心墙土石坝在水位不同升降速度条件下的渗流场进行了数值试验,分别设计了从0.0 m开始以2.51、.5 m/d的水位上升速度蓄到88.0 m正常蓄水水位的计算工况,以及从88.0 m正常蓄水水位分别以8.0、4.0、2.0 m/d水位下降速度泄水至10.0 m最低水位的计算工况,计算了各工况下粘土心墙土石坝的渗流场,对比分析了水位升降速度对坝体渗流场的影响.基于上述渗流计算成果,分析了各工况下土石坝上游、下游面坝坡的稳定性,总结了坝坡最危险滑动面的时空演化规律和安全系数随水位升降速度的变化规律,为水库调水和日常管理提供了参考.  相似文献   

2.
库水位变化引起的瞬态渗流对土石坝坝坡稳定性影响显著,为此依托某土石坝工程,开展不同库水位下降速率和坝体渗透性下大坝瞬态渗流场计算,分析坝体浸润线滞后程度及上游坝面渗流量变化特性,进而在考虑坝体材料抗剪强度随机分布的基础上对坝坡开展瞬态渗流作用下的抗滑稳定性分析,获得坝坡稳定安全系数及失稳概率变化曲线。计算结果表明:库水位下降速率v越大,坝体渗透系数ks越小,浸润线的滞后程度越显著;v越大或ks越大,到达稳定降落水位时的外渗流量越大;库水位下降结束瞬时坝体浸润线滞后率最大,使得坝坡稳定安全系数最小,相应的失稳概率最大,随着时间延续安全系数会不断回升,失稳概率相应降低;建立的坝坡稳定安全系数和失稳概率与浸润线滞后率的拟合关系式可为综合评估大坝运行安全提供理论指导。  相似文献   

3.
在总结大量水库大坝加固实践的基础上提出一种新坝型—纵向增强体土石坝,即以常规土石坝为依托,在其内部"插入"集防渗与受力为一体的刚性结构体(纵向增强体)。增强体既起到防渗体系作用,又起到结构体作用,力求克服传统土石坝(如均质坝、土质心斜墙坝等)在漫顶、渗漏、裂缝等原发性病险,以及滑坡、变形、白蚁等次生性灾害,特别针对传统土石坝存在的洪水漫顶溃坝、损毁、失效等灾难提出了尽可能的解决方案。从理论上简要分析了纵向增强体土石坝相对于常规土石坝抵御洪水漫顶破坏的安全程度,初步阐述这一新坝型安全运行的机理,分析洪水漫顶造成下游堆石料被冲刷流失,形成坝体冲坑等水力学过程,冲坑的逐步形成将恶化增强体的受力条件,最终导致增强体上游侧受力而下游侧临空的受力状态,从而影响到整个坝体是否溃决。计算表明,增强体作为刚性结构体延缓了坝体的溃决,并为工程抢险和下游群众转移争取到足够的时间。纵向增强体土石坝在工程建设投资与工期、施工工艺与材料选取方面均有一定优势,对今后建坝或对已建成土石坝的除险加固有着十分重要的意义和广阔的应用前景。  相似文献   

4.
为研究库水位变动情况下凤亭河水库黏土心墙坝的渗透稳定性规律,根据非饱和渗流原理,利用Geostudio软件进行了数值模拟,得到了不同工况下坝体内部的浸润线变化情况、渗漏量以及上下游坝坡的稳定性规律,并对工程的防渗墙长度进行了优化。结果表明:库水位水平越低,浸润线也越低;库水位骤降时,心墙处的浸润线有一个"延缓下降"的效应;库水位水平越高,渗漏量越大,防渗墙深度越深,相同情况下的渗漏量越小;库水位水平越低,上游坝坡安全系数越低,而下游坝坡安全系数越高,防渗墙深度对下游坝坡安全系数大小的敏感性要大于上游坝坡;库水位骤降时,上游坝坡安全系数先减小、后增大,最后保持不变,而下游坝坡安全系数持续增大;根据凤亭河水库黏土心墙坝渗透稳定性计算结果,建议凤亭河水库黏土心墙坝防渗墙深度取为50 m。  相似文献   

5.
利用椭圆-抛物双屈服面模型,对某沥青混凝土心墙土石坝进行三维有限元计算分析,研究了坝体在竣工期、蓄水期坝体的应力变形特性.计算结果表明:坝体竣工期最大沉降为50.86cm,占最大坝高(包括覆盖层,计69m)0.4%.坝体蓄水期最大值为50.5m,占最大坝高0.397%.顺河向水平位移较小.其中,竣工期向下游水平最大位移为5.58cm,向上游水平最大位移为4.5cm.蓄水期向上游水平最大位移为8.5cm.竣工期和蓄水期坝体大主应力分布规律相似,且竣工期和蓄水期均存在心墙拱效应.心墙小主应力均大于零,即没有出现拉应力.竣工期和蓄水期坝体的应力水平均不高.  相似文献   

6.
基于挡土墙墙背俯斜、粗糙且填土表面倾斜的情况,以粘性填土为研究对象,用静力平衡方法研究了挡土墙后滑动土楔体达到极限平衡状态时作用于墙背的土压力,提出了主动土压力和被动土压力的一般形式.一般形式的提出,使朗肯土压力理论和库伦土压力走向统一,使经典土压力理论得以完善,使挡土墙工程设计时的计算更加便捷.  相似文献   

7.
卡尔克特水库大坝稳定问题分析   总被引:1,自引:0,他引:1  
坝坡稳定计算是为了保证土石坝在自重和各种外荷载(如水压力及地震力等)作用下具有足够的稳定性,不至于产生通过坝体或坝体和地基的整体剪切破坏.对卡尔克特水库大坝进行了稳定分析.  相似文献   

8.
目的推导挡土墙浸水情况下的滑动稳定系数的变化公式,分析凸榫对挡土墙抗滑移的作用.方法用库仑土压力理论和朗肯土压力理论对沈大高速公路某段重力式挡土墙因墙后浸水而产生滑移破坏进行受力分析.结果路基由于排水不畅形成的瞬时水位对挡土墙的滑移影响很大,随着水位的提高该挡土墙的滑动稳定系数很快低于允许值.结论凸榫前产生的被动土压力可以显著提高挡土墙抗滑能力,从而可以有效解决路基由于排水不畅形成的瞬时水位使挡土墙产生的滑移破坏.  相似文献   

9.
指出相同砂土在不排水三轴拉伸条件下测得的临界状态强度远低于在三轴压缩条件下的强度,这归因于土的各向异性.挡土墙在地震作用下变形与破坏的程度与填土的临界状态强度密切相关.正确估计土的强度对于评价挡土墙的抗震性能具有重要意义.对于受被动土压力作用的挡土墙,如果不考虑土的各向异性,可能会过高估计土的临界状态强度,即土液化后能够提供的被动土压力的大小,从而过高估计挡土墙的安全储备.对挡土墙抗震性能进行完全耦合有效应力分析,计算结果表明:对于受被动土压力作用的挡土墙,砂土内在各向异性对其抗震性能影响显著;对于受主动土压力作用的挡土墙影响轻微.  相似文献   

10.
基于库仑被动土压力理论和极限平衡法,提出一种改进的重力式挡土墙被动土压力分析方法。该方法能反映挡土墙变位模式和位移大小的影响,还能考虑和挡墙位移相关的墙后填土发挥的内摩擦角对土压力分布的影响。分析结果表明,随着挡土墙顶位移的增大,墙后填土达到极限平衡状态的区域逐渐增大,墙后土压力逐渐增大;只有当墙顶位移充分大时,才能达到库仑被动极限平衡状态,相应的土压力等于库仑被动土压力。  相似文献   

11.
为了准确地设计挡土墙,研究非极限位移时的土压力计算.将非极限状态下的被动土压力定义为中间被动土压力,分析土体的破坏机理,建立内外摩擦角与位移之间的关系公式.改进库仑土压力理论,根据静力平衡条件,推导出在刚性挡土墙平动模式下中间被动土压力强度、中间被动土压力合力和中间被动土压力系数的理论公式.分别计算分析填土为干砂及填土为饱和砂土的模型试验,与实测数据进行对比,发现两者结论比较吻合.在平动模式下,中间被动土压力与被动土压力系数均随着位移的发展而增大,且在任一位移时中间被动土压力沿墙高近似成线性分布.  相似文献   

12.
膜土防渗系统对高土石坝坝体应力的改善   总被引:2,自引:0,他引:2  
以四川瀑布沟心墙土石坝为例,应用有限差分软件FLAC3D建立高土石坝的三维模型,主要对土工膜与粘土心墙联合防渗的结构作力学方面的分析,对比了以下3种情况下的应力状态:①坝体与地基接触部分不设置高塑性粘土的情况;②坝体与地基接触部分设置高塑性粘土的情况;③坝体与地基接触部分不设置高塑性粘土,但是心墙前铺设土工膜的情况。对比分析应力水平可知,土工膜的铺设不仅可以代替高塑性粘土起到防渗的优良效果,而且能够改善坝体内的应力状态,有效削弱心墙前的拱效应,从而提高防渗心墙的安全性。  相似文献   

13.
土压力计算中几个问题的探讨   总被引:1,自引:0,他引:1  
针对土压力计算中传统土压力计算方法的适用性问题、考虑墙体位移的土压力计算问题、不同墙体变位模式下土压力计算问题和水土压力的分算与合算问题,进行了详细的分析与探讨.指出基于极限平衡理论的传统土压力理论与实际出入较大,而现有的考虑墙体位移的土压力计算模型,实质是对主动和被动土压力的非线性插值,是对传统土压力理论的修正;条带平衡法能够导出土压力沿墙背的分布解,与考虑墙体位移的土压力模型结合,可综合考虑墙体变位模式与墙体位移对土压力的影响.关于基坑支护结构上的水土压力,对于沙土可采用水土分算法;对于黏性土,宜采用经以塑性指数与液性指数有关的系数修正的混合算法,从而避免出现夸大或低估静水压力的现象。  相似文献   

14.
采用库仑土压力理论的假设,通过研究刚性挡墙绕墙底转动极限状态土体内主应力拱形状,计算了土层平均竖向应力和剪应力,得到了对应于不同内摩擦角和墙土摩擦角的侧土压力系数和水平摩擦系数的理论公式。将其用于水平微分单元法求解挡墙绕墙底转动时的主动土压力,得到了挡土墙主动土压力强度、土压力合力和合力作用点的理论公式,分析了填土内摩擦角和墙土摩擦角对土侧压力系数、水平摩擦系数、土压力强度、土压力合力、土压力合力作用点的影响,并与模型试验数据进行了比较。  相似文献   

15.
为了能够用较简单的数值公式模拟挡土墙变位后的土压力分布,并能较好地反映试验实测结果,根据土体微分单元体的静力平衡条件,建立了挡土墙绕墙顶转动情况下被动土压力分布的计算表达式;同时进行了被动土压力合力、作用点与库仑土压力及实测结果的分析比较.公式很好地反映了实测曲线的非线性分布,同时被动土压力合力与库仑被动土压力基本相同,合力作用点接近于0.27倍墙高处.可以供设计参考使用。  相似文献   

16.
挡土墙墙后土体应力状态及土压力分布研究   总被引:1,自引:0,他引:1  
为了考虑在平移模式下刚性挡土墙墙后土体主应力偏转和水平土层间的剪应力作用,对墙后滑裂土体的应力状态进行了详细分析.考虑各土层滑裂面水平倾角的变化,对水平层单元法改进,建立了逐层渐近计算法.将墙面、滑裂面的应力状态与墙后滑裂土体的水平土层的静力平衡相结合,建立了水平土层竖向应力、挡土墙土压力、合力及其作用位置的计算公式.计算结果表明,挡土墙主动土压力分布与模型试验结果基本一致;计算得到的滑裂面为一曲面,其顶宽比库仑理论滑裂面小,与试验结果相吻合.  相似文献   

17.
刚性挡土墙被动土压力的计算及影响分析   总被引:2,自引:0,他引:2  
动力决于、体力,体位、.在总结被动土压力研究成果的基础上,假定土体为库仑材料,根据极限平衡理论和库仑破坏准则,提出被动土压力的计算通式,并分别用郎肯和库仑土压力理论对该通式进行验证.分析被动土压力的影响因素,认为非饱和土含水量的变化、饱和土中地下水的运移、土的应力历史、挡土墙的刚度和位移、时间等对被动土压力均有很大影响.  相似文献   

18.
对于支撑式或锚拉式支挡结构,进行预留土辅助支护时需验算绕支点的抗倾覆稳定性,然而目前还未找到合理的计算方法。基于极限分析上限定理,提出预留土支护基坑的3种可能破坏模式,运用斜条分法对被动区土体进行离散,并构建相容速度场,分别推导3种破坏模式下基坑抗倾覆力矩的计算表达式,采用遗传算法编程,分析支挡结构与土体间摩擦系数、土体黏聚力及预留土几何参数等对破裂角及抗倾覆力矩的影响规律。结果表明:当墙背光滑且土体黏聚力为零时,利用朗肯被动土压力理论计算得到的抗倾覆力矩为一上限解;存在黏聚力时,朗肯被动土压力理论计算值偏于保守,存在摩擦系数时,库伦土压力理论计算的抗倾覆力矩偏大;与预留土宽度和坡度相比,预留土高度对抗倾覆力矩的影响更加显著。  相似文献   

19.
高土石围堰边坡稳定性与堰体材料的力学性质密切相关.在围堰施工及运行过程中,随着结构应力和渗流状态的变化,堰体材料力学参数也发生持续性变化.基于围堰施工过程中堰体应力及渗流状态变化规律分析和土石材料力学非线性理论,建立考虑施工过程的土石围堰边坡稳定分析模型;在此基础上,进行高土石围堰施工-运行过程边坡稳定特性分析,结果表明堰体边坡稳定的最不利工况出现在基坑开挖后的堰前水位下降期,最危险滑动面位置随着水位下降速率的增加由背水面转向迎水面;当水位下降速率一定时,堰坡稳定安全系数呈先减小后增加趋势,最小值及其出现时间与水位下降速率相关.  相似文献   

20.
采用位移土压力计算理论,结合室内模型实测值对RTT变位模式下考虑位移影响的被动侧土压力进行计算与分析。结果表明,土压力强度沿墙高度的分布、土压力合力大小以及合力作用点的位置均与实测值基本相符合,说明在RTT变位模式下采用计算理论公式计算被动侧土压力是可行的;与n=0.78时相比,n=0时符合更好,这可能与模型箱尺寸效应以及试验箱上部土体受到扰动较大有关;随着n值的逐渐增大,土体更易达到朗肯被动极限状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号