首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 为提高废弃混凝土利用率,研究再生骨料掺入量、纤维长度、水灰质量比等因素对再生混凝土劈裂抗拉强度的影响.方法 采用干拌法掺入不同掺量纤维,制作150 mm×150 mm× 150 mm标准立方体试块,标准养护28 d后进行劈裂抗拉试验.结果随着废弃纤维掺入量的增加,废弃纤维再生混凝土的劈裂抗拉强度增加,当掺入量达到0.12%时,劈裂抗拉强度有所下降或者增加趋势有所减弱.掺入纤维长度增加,纤维体积掺入量增加,劈裂抗拉强度下降或者增长趋势有所减弱;再生骨料掺入量的增加、水灰质量比增加使劈裂抗拉强度有所降低.结论试验证明废弃纤维再生混凝土的劈裂抗拉强度比普通混凝土的劈裂抗拉强度有所提高.  相似文献   

2.
在5%、10%、15%、20%橡胶掺量的橡胶混凝土中外掺1.0%体积率的钢纤维,通过立方体劈裂抗拉试验、棱柱体抗折试验,研究了钢纤维橡胶混凝土的力学性能。实验结果表明:橡胶混凝土立方体劈裂抗拉强度和棱柱体抗折强度随橡胶颗粒掺量的增加而明显下降,掺入钢纤维后的钢纤维橡胶混凝土劈裂抗拉强度先降低后提高,棱柱体抗折强度均明显提高,韧性均显著提高。  相似文献   

3.
研究了不同水灰比和钢纤维掺量对自密实钢纤维混凝土工作性能和抗压强度的影响,并对自密实钢纤维混凝土试件进行碳化试验、抗氯离子渗透性能及抗水渗透性能试验。现场采用1m×1m×1m的配筋试模箱进行浇注模拟实验,分析不同浇注工艺对混凝土性能影响。结果表明:当水灰比由0.32增至0.34时,试件的初始坍落度和坍落度扩展度分别由170mm/445mm增加到260mm/655mm,其试件7d和28d的抗压强度分别降低了34.5%和15.8%;当钢纤维掺量为50kg/m3时,混凝土试样的流动性能最佳,且试件的强度随钢纤维掺量增加而增大。当水灰比为0.34时,试件的抗碳化性能、抗渗透性能良好,而抗氯离子性能随钢纤维掺量的增加呈上升趋势。现场模拟实验显示,与稍加振捣的试件相比,不加振捣的自密实钢纤维混凝土内部结构更密实,钢纤维分布均匀,7d强度为57.6MPa。  相似文献   

4.
进行了掺钢渣粉活性粉末混凝土配合比的正交设计试验,研究了钢纤维掺量与养护条件对掺钢渣RPC强度和体积变形的影响.结果表明:掺入总量为48%的钢渣粉、超细粉煤灰和硅灰,并以细河砂代替石英砂,同时掺入适量钢纤维,在0.18水胶比下制备了掺钢渣活性粉末混凝土(RPC200).经90℃热水养护72 h后,其抗压和抗折强度分别达152 MPa和27.9 MPa;钢纤维或热养护均有利于提高掺钢渣RPC的强度,且掺入钢纤维还能有效降低掺钢渣RPC的收缩率.  相似文献   

5.
采用自制的特殊成型装置,以不同体积掺量的钢纤维制备定向钢纤维排布的超高性能混凝土(UHPC)试样(D),并与乱向钢纤维分布试样(L)对比分析了力学性能和微观结构。结果显示,随钢纤维掺量的增加,L的抗压强度先大幅度增加后趋于稳定,抗折强度则不断增加,而D的抗压与抗折强度均持续增大;D的抗压强度在钢纤维掺量小于1.5%之前都低于L的,但当钢纤维掺量增大到1.8%时则反超;D在各钢纤维掺量下的抗折强度都高于L的;L的粘结拉伸强度在钢纤维掺量增加到1.5%后不再提高,而D则随钢纤维在各钢纤维掺量下的拉伸强度值均显著高于L的,并且测试结果更加稳定可靠,两种试样粘结拉伸强度与掺量都呈现较高的线性正相关关系;D中的孔隙率较小且与钢纤维掺量无关,而L中明显存在更多、更大的孔洞,孔隙率随钢纤维掺量的提高分别比同钢纤维掺量D的增加3~10倍,同时,D在断裂面上露出的钢纤维长度明显比L的更长,这是导致定向分布钢纤维大幅度增韧UHPC的原因。  相似文献   

6.
纤维纳米混凝土力学性能和抗氯离子渗透性能的研究   总被引:2,自引:0,他引:2  
通过坍落度、贯入阻力试验,不同龄期抗压强度、劈拉强度和抗折强度试验以及氯盐溶液浸泡干湿循环试验,探讨了钢纤维掺量、纳米矿粉种类和掺量以及混凝土基体强度对纤维纳米混凝土工作性能、凝结时间、基本力学性能和抗氯离子渗透性能的影响.结果表明:随钢纤维掺量增加,纤维纳米混凝土坍落度逐渐减小,各龄期强度和28 d龄期抗氯离子渗透性能呈增大趋势;随纳米SiO2掺量增加,拌合物坍落度快速降低,初凝、终凝时间缩短,各龄期强度整体呈上升趋势且抗氯离子渗透性能逐渐提高;随纳米CaCO3掺量增加,坍落度先增加后减小,初凝时间逐渐缩短,终凝时间变化不显著,各龄期强度呈增大趋势且抗氯离子渗透性能逐渐提高;随混凝土基体强度降低,坍落度快速增大,初凝和终凝时间迅速延长,各龄期强度和28 d龄期抗氯离子渗透性能逐渐降低.钢纤维的掺入,改善了混凝土的破坏形式;纳米矿粉的掺入,改善了混凝土的微观结构,增加了混凝土基体的密实度.混凝土中掺入适量的纤维和纳米矿粉,有效改善了混凝土的性能.  相似文献   

7.
为了研究钢纤维混凝土的抗冻性能,通过对比不同钢纤维体积率和冻融循环次数的混凝土,测定各种掺量钢纤维混凝土冻融后的质量损失及相对动弹模损失率,分析钢纤维掺量及冻融循环次数对混凝土的抗压、抗折强度的影响,进行了钢纤维混凝土在冻融循环作用后的力学性能研究。试验结果表明,掺入钢纤维后对冻融循环作用下的混凝土的抗压强度影响较小。当冻融循环次数较少时,掺入钢纤维后混凝土的抗折强度有较明显的提高;当冻融循环次数增多时,钢纤维对混凝土的增强作用较小。  相似文献   

8.
通过坍落扩展度、T500、U型仪和L型仪等测试方法探讨了不同水胶比、砂率及不同钢纤维掺量条件下,钢纤维自密实高强混凝土的制备技术,研究了不同条件下制备的钢纤维自密实高强混凝土力学性能.结果显示,在试验条件下,适宜水胶比及砂率条件下钢纤维混凝土满足自密实混凝土工作性能要求;随着钢纤维掺量的增加,钢纤维自密实混凝土的强度提高,混凝土流动性降低.研究制得的钢纤维高强混凝土在满足自密实性能要求条件下,抗压强度达到CF90技术要求,抗折强度>11.0 MPa.  相似文献   

9.
:本文探究强度在150 MPa 以上的装配式墙体材料超高性能混凝土(简称UHPC),分析常用矿物掺合料 和钢纤维等对UHPC 流动性及强度发展的影响,通过原材料优化选择、正交试验设计,寻求最佳配合比。结果 表明钢纤维掺量对UHPC 强度性能影响较大,随着钢纤维掺量的增加,硬化UHPC 的抗折、抗压强度都有显 著提升;在UHPC 新拌物流动性方面减水剂掺量起到重要作用;当硅灰掺量25%、石英粉掺量15%、水胶比 0.18 时,即可获得试验所需的抗压强度大于150 MPa、扩展度大于180 mm 的超高性能混凝土。  相似文献   

10.
混凝土与钢纤维混凝土双轴拉伸与拉压作用的试验研究   总被引:7,自引:1,他引:7  
对素混凝土与钢纤维混凝土在双轴拉伸与拉压应力作用下的性能进行了试验研究。试验结果表明:混凝土双轴拉拉伸强度低于单轴拉伸强度,在双轴拉压区段抗压强度随拉应力的增加而降低,钢纤维的掺入(掺量不太高)对混凝土的破坏形态影响不很明显,但使混凝土限拉应变有所增加,同时给出了混凝土在双轴拉伸与拉压区段实用的极限强度准则。  相似文献   

11.
钢纤维混凝土弯曲韧性实验研究   总被引:1,自引:0,他引:1  
为探讨钢纤维掺量对钢纤维混凝土弯曲韧性的影响,按照美国材料与试验协会(ASTM)定义的弯曲韧性指数试验方法.测试了钢纤维混凝土的挠度、初裂强度和抗压强度,计算了钢纤维不同掺量下混凝土的弯曲韧性指数值.钢纤维的掺入,使混凝土的破坏形式由脆性破坏变为延性破坏,并具有一定的残余强度.在一定范围内,钢纤维混凝土的弯曲韧性与钢纤维掺量成正比,钢纤维掺量达到90kg/m^3时,混凝土的弯曲韧性指数已接近理想弹塑性材料.掺量在30~90kg/m^3范围内,钢纤维混凝土的初裂强度变化不明显.  相似文献   

12.
采用正交设计方法对再生混凝土(RC)的配合比进行分析,探讨水胶比、再生骨料掺量以及超细粉煤灰(UFA)掺量等因素对再生混凝土强度的影响规律.结合高性能混凝土技术并优化了混凝土配合比设计参数,再生骨料掺量90%,可配制出和易性优良,3d抗折强度大于3.0 MPa,28 d抗折强度大于5.0 MPa的再生混凝土,均能满足重交通和特重交通开放交通的要求.试验结果表明:随着再生骨料掺量的增加,再生混凝土的拉压比和折压比在后期均有提高,韧性改善.同时,采用多元回归分析的方法,建立了再生混凝土强度与胶水比、再生骨料掺量以及UFA掺量的经验公式,相关性高,为再生混凝土的配制技术提供了初步的理论基础.  相似文献   

13.
针对宁夏地区废旧沥青混凝土再生利用效率低的问题, 以AC-10 沥青混凝土为对象, 试验研究了掺量为30%、35%、40%、45%、50%、55%、60%和65%的RAP 对沥青混凝土路用性能影响的规律。对40%RAP 掺量的沥青混凝土掺入1%、3%、5%和7%的再生剂, 研究其对恢复废旧沥青混凝土性能的变化规律。通过马歇尔试验和车辙试验研究了沥青混凝土的力学性能和高温稳定性。试验结果表明: 随着RAP 掺量的增加, 沥青混凝土动稳定度呈先增加后减小的趋势, 当沥青混凝土中掺入40%RAP 时, 其动 稳定度的值达到峰值1 984 次/ mm; 当沥青混凝土中掺入40%RAP 和1%的再生剂时, 其最大稳定度达到峰值16. 71 kN, 相对于再生剂掺量为零的沥青混凝土增幅为35. 2%, 再生剂掺量为3%时, 其动稳定度达到峰值2 643 次/ mm, 沥青混凝土的抗车辙能力最大。  相似文献   

14.
为了研究混杂纤维喷射混凝土的弯曲韧性,采用不同掺量的钢纤维和聚丙烯纤维混杂以及高炉微粉复合超叠加的方法制备600mm×600mm×100mm混杂纤维喷射混凝土方板并置于刚性支撑架上,选用等位移控制对方板进行中心加载。通过生成的荷载—挠度曲线及对其进行积分所得的能量吸收值综合评价各组方板的弯曲韧性,同时,通过破坏过程评价各板裂缝控制能力。试验结果表明:掺入1.2%钢纤维和0.11%聚丙烯纤维的喷射板试件的弯曲韧性优于掺入0.8%钢纤维和0.11%聚丙烯纤维的喷射板,其最大峰值荷载提高了18%,板中心挠度至25mm时的能量吸收值也提高了25.6%;对于仅掺入0.8%单一钢纤维的板,混杂了0.11%聚丙烯纤维后,两种纤维间的正混杂效应使得板中心挠度至25mm时的能量吸收值提高了28.5%;高炉微粉掺量的增加能提高混杂纤维喷射混凝土板的弯曲韧性;混杂纤维喷射混凝土板均展现出了良好的裂缝控制能力,板整体呈现裂而不断的延性破坏。  相似文献   

15.
为提高整体式不锈钢纤维导电混凝土的力学性能及导电性,促进其在实际工程中的应用,利用不锈钢纤维良好的导电性,制备成整体式不锈钢纤维导电混凝土,并对其特性进行相关的试验研究。研究发现:掺入适量不锈钢纤维的混凝土的结构的力学性能有效加强,包括抗压强度和弯拉强度。结合复合相导电材料渗滤阀值理论来分析,整体式不锈钢纤维导电混凝土的导电性能与掺入的钢纤维量有着紧密的联系,随着掺量的增加,电阻率会出现谷值,而后出现回弹。  相似文献   

16.
为研究橡胶颗粒粒径和掺量对再生混凝土耐久性的影响,针对水灰比为0.50再生混凝土设计了橡胶粒径60目、1~3 mm和3~6 mm与掺量10、20、30 kg/m3的6组混凝土配合比,对再生混凝土进行了抗压强度、抗氯离子渗透和抗冻性试验.结果表明:掺入橡胶颗粒降低了再生混凝土的抗压强度,再生混凝土的抗压强度随着橡胶颗粒掺量和粒径的增加而减小;橡胶颗粒的掺入能改善再生混凝土的抗氯离子渗透性能和抗冻性能,再生混凝土的抗氯离子渗透和抗冻性随着橡胶颗粒掺量增大和粒径的减小而提高,当橡胶颗粒的粒径为60目、掺量为30 kg/m3时,再生混凝土的耐久性能最好.  相似文献   

17.
建筑垃圾再生微粉利用的试验研究   总被引:1,自引:0,他引:1  
目前国内再生混凝土的研究一般只限于再生粗、细骨料的问题,为了进一步研究建筑垃圾中粒径〈0.16mm微粉的再生性问题,采用正交试验方案,分析了水胶比(w/b)、FH掺量、FZ掺量及碱性激发剂掺量对混凝土性能的影响,得出了影响混凝土强度的因素顺序为FZ掺量〉水胶比〉FH掺量〉NaOH掺量,并得到相应各种材料的最佳掺量。通过试验证明,再生微粉掺合料具有一定的活性,在碱性激发剂加入的情况下活性有所提高,可以取代水泥用量的20%用于制备满足工作性和力学性能要求的混凝土,从而使得建筑垃圾100%利用。  相似文献   

18.
为了研究多指标情况下再生混凝土力学性能的最优组合,以再生骨料替代率、粉煤灰替代率和钢纤维掺入率为因素,抗压强度、劈拉强度、抗折强度、拉压比和折压比为指标,分别利用排队评分法与矩阵分析法对再生混凝土正交试验结果进行分析.结果表明:各因素对再生混凝土力学性能影响的大小顺序依次为钢纤维掺入率、粉煤灰替代率、再生骨料替代率; 再生混凝土力学性能的最优组合为A4B2C4,即再生骨料替代率为100%、粉煤灰替代率为10%、 钢纤维掺入率为1.8%; 矩阵分析法所得结果与正交试验分析结果更为接近,这表明矩阵分析法在确定最佳组合方案时优于排队评分法.  相似文献   

19.
在10%橡胶掺量的橡胶混凝土中分别添加0.5%、1.0%、1.5%、2.0%(体积占比)的钢纤维,以此为试样进行复合材料的基本力学性能试验,包括立方体试块的抗压试验、动弹性模量试验、立方体劈裂抗拉试验以及四点弯曲抗折试验,探讨钢纤维体积占比和复合材料各方面力学性能之间的关系。通过实验数据分析及破坏形态观察,发现:随着钢纤维掺量的提高,复合材料的抗压强度、弹性模量、劈拉强度、抗折强度均有所提高,韧性也有所提高。  相似文献   

20.
活性粉末混凝土(简称RPC)作为一种新型材料,拥有优异的力学性能.为了使其更好地应用于桥梁工程等工程实践当中,对RPC抗压强度的尺寸效应及弹性模量进行试验研究.对于活性粉末混凝土而言,不掺钢纤维(RPC-1)的混凝土抗压强度尺寸效应较掺钢纤维的混凝土抗压强度明显;三种尺寸的立方体块抗压强度随试块尺寸的增大而减小;100 mm×100 mm×100 mm试块的抗压强度与100 mm×100 mm×300 mm试块的轴心抗压强度非常接近,活性粉末混凝土表现出了良好的韧性;三组混凝土的弹性模量分别为44.4 GPa、41.2 GPa、41.8 GPa,试验数据显示,混凝土在1/3强度内不会出现明显的塑性变形,可看做为线弹性材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号