首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
埋地热油管道停输径向温降规律研究   总被引:7,自引:1,他引:6  
热油管道的计划检修和事故抢修是在管线停输情况下进行的.停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当增大到一定值后,会给管道再启动带来极大的困难,甚至会造成凝管事故.热油管道不仅存在轴向温降,而且还存在径向温降.为了确保安全经济地输油,在得出停输后轴向温降规律的基础上,还必须研究管路停输后的径向温降情况,以便更准确地确定允许停输时间.根据热油管道停输后油品轴向温降公式和径向传热规律,提出了传热定解问题并对其进行数学求解,得出了管道中油品径向温度的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

2.
安全停输时间的数值计算   总被引:9,自引:0,他引:9  
输油系统出现故障,进行抢修或是输油设备进行定期维修都要求停输。停输可作为输油管道运行管理的一种手段,但停输引起的一些问题也应特别注意,尤其是如何确定安全停输时间成为停输工艺的关键。热油管道停输后,管内存油的温度下降,粘度上升。当存油温度降到一定程度时,管道再启动工作就会变得十分困难,甚至发生凝管事故。输油管道安全停输时间计算的准确与否直接影响到管线安全运行及效益,该项计算极其复杂,需要综合考虑整个输油系统各方面的因素。根据热油管道的流动特征,建立了热油管道停输数学模型,并用追赶法计算安全停输时间,从而为指导生产防止凝管事故发生提供了科学的依据。计算结果与实测数据基本相符  相似文献   

3.
在紊流模型基础上, 建立了顺序输送混油新的模型,并利用PHOENICS软件对停输前后混油段浓度分布进行了数值模拟,给出了混油浓度变化图象和曲线.研究结果表明:在竖直管道顺序输送过程中密度差对层流边界层的影响会表现的比较明显且大于粘度差的影响.同时也验证了停输时,密度大的油品在管道下方所形成混油段长度无明显增大现象且小于油品以相反的方向输送时所形成的混油段长度.研究结果对于减少停输工况下的混油与停输再启动混油界面的跟踪与切割具有理论指导意义.  相似文献   

4.
埋地管道在运行过程中有时会因意外情况而需要停输。在停输过程中,管内油品的温度和土壤温度场的变化很大,会影响管道的安全输送,因此研究停输过程中管内油品的温度和土壤温度场对埋地管道的安全运行有重要的意义。模拟了埋地管道停输时土壤开挖过程中的土壤区、管内油温以及开挖区等三个区域的温度场变化情况,并模拟了开挖区域温度的变化对土壤温度场、管内油温的影响,得出了管内油温和土壤温度场的变化规律,研究结果可为管道的安全生产提供一定的科学依据。  相似文献   

5.
建立了原油顺序输送混油模型,利用PHOENICS软件进行了数值模拟,并得出了混油浓度变化图象和曲线.表明在原油管道顺序输送过程中粘度差的影响,给出了不同管道倾角条件下浓度场的分布;同时也验证了停输时,密度大的油品在管道下方所形成混油段长度无明显增大现象且小于油品以相反的方向输送时所形成的混油段长度.研究结果对于减少停输工况下的混油与停输再启动混油界面的跟踪与切割具有理论指导意义.  相似文献   

6.
加热原油管道停输热力计算   总被引:16,自引:0,他引:16  
在加热原油管道停输过程中 ,油品温度下降 ,粘度上升 ,有时甚至出现冻管事故 ,常常给再启动带来困难。合理地进行热油管道停输后的温度计算 ,模拟原油的凝固过程 ,有利于确定安全停输时间 ,制订再启动方案。针对加热原油管道停输后油品、管道及周围介质的相互关系和它们的不稳定传热 ,提出了热力计算的数学模型。该模型综合考虑了有关物性参数随温度的变化以及在冷却过程中油品的凝固问题。采用保角变换和盒式积分法对数学模型进行了处理 ,并构造出问题的差分方程。通过数值计算分析管道停输后油品冷却和冷凝规律 ,运用文中所提出的方法 ,对加热原油管道停输温度变化和冷凝过程进行了计算 ,与实测数据和文献中计算方法相比 ,该计算结果更符合实际情况  相似文献   

7.
热油管道停输过程土壤温度场PHOENICS数值模拟   总被引:1,自引:0,他引:1  
埋地热油管道停输过程周围土壤温度场的计算是研究间歇输送过程中确定停输时间以及再启动等问题重要组成部分。通过分析埋地热油管道的几何特性建立有限区域内停输时热油管道土壤数学模型和确定边界条件。并使用PHOENICS软件对该数学模型进行求解。模拟结果与实测数据吻合较好,误差在2%以内。  相似文献   

8.
热油管道停输温降规律的研究是确保管线安全启动的首要条件。埋地长输管道沿线地质条件复杂,常穿越河流、湖泊,导致部分管线水下敷设,由于没有周围土壤的蓄热作用,在停输过程中水下管段的温降往往决定了整条管线的停输时间。随着海上油气的开采,水下管道安全停输规律的研究显的更为重要。利用FLUENT软件,采用"焓—多孔度"技术模拟水下管道停输过程管内原油温降规律并考虑了原油凝固潜热对温降的影响,得出了不同时刻管内原油凝固区、混合区、液油区的位置。结果表明,管道停输初期管内原油温度整体下降较快,中后期由于原油凝固释放潜热且凝油层厚度不断增加,热阻增大,大大降低了原油温降速率,模拟结果与实际吻合较好。  相似文献   

9.
对热油管道停输温降规律进行研究,是确保管线安全启动的首要条件。针对海底热油管道运行环境特点,基于多孔介质传热理论,建立了海底土壤水热耦合控制方程,用软件模拟了海底管道停输过程中温度随时间的变化规律,分析了保温层、渗流温度、渗流速度等因素对管道停输温降的影响,确定了合理的停输时间。研究结果可为海底管道安全启动提供理论指导。  相似文献   

10.
埋地热油管道停输三维非稳态传热过程的数值模拟   总被引:1,自引:1,他引:0  
针对埋地热油管道停输过程进行研究,结合有限差分法和有限容积法建立埋地热油管道正常运行及停输过程的非稳态传热模型,考虑了管道正常运行及停输过程中管内原油粘度,密度,比热,导热系数随温度的变化关系,同时考虑了停输过程原油凝固潜热对温降的影响,地表温度采用周期性边界条件,数值模拟了埋地热油管道运行至第二年3月末停输温降过程。研究表明,随着停输时间的延长,管道沿线各截面处管内原油固化过程各异且土壤温度场变化明显,确定合理停输时间,为管道安全启动提供理论指导。  相似文献   

11.
海底管道停输温降直接决定着海管置换与掺水输送时机,以及停输后能否顺利再启动。为了研究海管各覆盖层的蓄热对停输温降的延缓作用,通过理论分析各层相对流体的蓄能能力大小,模拟计算钢管和土壤蓄热对不同类型管道停输后温降的影响情况,并以渤海两条实际管道为例优化输送方案。结果表明,钢管蓄热总量约为所输原油蓄热总量的一半,所输水量的1/4,所输天然气的4~16倍(根据系统压力的不同);钢管和土壤的蓄热散热对流体停输温降均有一定的延缓作用。对于保温管道,钢管的蓄热散热具有主导作用;不保温管道,土壤的蓄热散热影响很大;对于渤海油田常见的输油海管,考虑钢管的蓄热散热能提高管线出口温度3.5~13.5 ℃;对于混输保温管道,当气油比(GOR)大于10时,钢管蓄热对停输温降的延缓作用尤为明显,有利于安全顺利输送;考虑土壤或钢管的蓄热散热对停输温降的影响可以延缓或取消掺水输送。  相似文献   

12.
采用OLGA软件建立了某油气混输管道几何模型,研究了管道停输和再启动过程中的瞬态流动规律。首先,分析了管道稳态运行时沿线温度、压力和持液率的分布特点,确定了沿线温度最小值所处位置及压力最大值所处位置,分析了环境温度和停输时间对运行参数的影响,确定了可保证温度最低点处原油温度高于其凝点的安全停输时间。在实际运行过程中,停输时间不应超过安全停输时间,否则容易出现管道凝管、启动压力过大等问题,威胁管道的安全运行。  相似文献   

13.
同沟敷设热油管道总传热系数计算方法   总被引:2,自引:0,他引:2  
根据长输埋地热油管道的导热情况对同沟敷设管道传热过程进行简化假设,通过引入导热形状因子并利用牛顿迭代法编制计算机程序,在计算同沟敷设管道总传热系数过程中可以考虑土壤物性、并行敷设管道间距以及分别考虑原油管道和成品油管道的埋深与油温。根据乌鲁木齐至鄯善同沟敷设管道沿线不同的土质地貌划分单元段,采用分段法对该管道沿线总传热系数进行计算,据此得出更为切合实际的沿线温降。并以乌鲁木齐至鄯善管段实测数据以及SCADA系统的运行监控数据为依据验证该方法的准确性,同时与数值模拟结果进行对比。分析了同沟敷设热油管道不同敷设间距对总传热系数的影响。  相似文献   

14.
架空原油管道停输期间温降及原油凝固界面推进   总被引:5,自引:0,他引:5  
由于架空原油管道没有土壤的蓄热来减缓管内原油的热散失,架空原油管道的温降过程往往成为决定整条管道允许停输时间的关键。根据原油温度划分管内原油为纯液油区、凝油区和纯固油区,并假设凝油区以已凝固原油、固体骨架和液态原油为填充相的多孔介质区域,该区域随着温降过程向管心推移。考虑了凝固潜热和空气横掠管道对流换热对原油温降过程的影响,建立了空气、管道与原油相互耦合的传热模型,并进行了数值模拟,数值结果表明停输前期管内原油的温度整体下降较快;在停输中后期,由于凝固潜热的释放,凝油厚度增加使得热阻增大,大大减缓了原油温度的降低;对流换热系数沿管道周向分布不均,导致管内原油温度周向分布不均和凝固界面中心偏离管道中心。  相似文献   

15.
埋地热油管线间歇输送技术研究   总被引:3,自引:2,他引:1  
原油管道低输量情况普遍存在。当管道输量低于允许最低输量时,如能采用间歇输送工艺则可以有效解决这一难题。在间歇输送过程中如果停输时间过长,管道内原油温度降低到一定值后,就会给管道的再启动带来极大的困难,甚至造成凝管事故。根据铁岭-大连管道的热力及水力特征建立了埋地管道间歇输送温降数学模型、再启动温升数学模型和再启动压力数学模型。采用有限差分方法,把热传导偏微分方程转化为线性方程组后,用迭代法求解。以鞍山到大石桥、大石桥到熊岳两段管道为例进行停输和再启动过程模拟计算。结果表明,当俄油输量为23300t/d,出站温度为45℃时,该管道在冬季的间歇输送方案是停输8天后再启动输油2天,可保证管道安全过冬。该方案成功地在铁岭-大连管道得到应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号