首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
在自行设计的常压微波等离子体射流装置上进行了丙酮模拟有机工业废气的脱碳实验,得到了纳米碳粉。利用Raman光谱、XRD、SEM、TEM和EDAX对制得的碳粉的结构和形貌进行了分析。体积分数62.5%的有机废气在等离子体射流的作用下得到的固态碳粉以微晶石墨结构为主,含有少量的微晶金刚石结构.TEM分析表明石墨晶体为颗粒状和层状结构.该技术可用于有机废气的脱碳处理和纳米碳粉的回收利用。  相似文献   

2.
UHMW-PE纤维经等离子体进行表面处理后,极大地改善了纤维与环氧树脂基体间的粘接性能。本实验通过对处理前后的纤维表面能变化的研究,从浸润的角度对粘结性能改变的机理作了第一步讨论。结果表明:等离子体处理大大提高了纤维的表面能,从而使得纤维具备了粘接性能改善的前提条件——能被环氧树脂所浸润。  相似文献   

3.
在自行设计的常压微波等离子体射流装置上进行了丙酮模拟有机工业废气的脱碳实验,得到了纳米碳粉.利用Raman光谱、XRD、SEM、TEM和EDAX对制得的碳粉的结构和形貌进行了分析.体积分数62.5%的有机废气在等离子体射流的作用下得到的固态碳粉以微晶石墨结构为主,含有少量的微晶金刚石结构.TEM分析表明石墨晶体为颗粒状和层状结构.该技术可用于有机废气的脱碳处理和纳米碳粉的回收利用.  相似文献   

4.
为实现超光滑表面光学元件的高精度无损加工,将大气射流等离子体炬技术引入到超光滑光学元件加工中.以石英玻璃为加工对象,对大气射流等离子体炬的物理抛光去除效应进行了研究,分析了大气射流等离子体炬放电功率、抛光时间、样品处理位置等工艺参数的变化,对石英玻璃刻蚀速率和表面粗糙度的影响.实验结果表明,以空气为工作气体时,对石英玻璃的刻蚀速率最高可达4.6nm/min.经抛光处理后的石英表面粗糙度受到工艺条件的影响,在等离子炬功率为420~460W,作用距离16~22mm范围内,石英玻璃的表面粗糙度有明显下降,随着抛光时间的增加,呈现出收敛性.  相似文献   

5.
等离子体处理对芳砜纶纤维力学性能的影响   总被引:3,自引:1,他引:2  
为改善芳砜纶纤维的可纺性,对其进行了低温常态等离子体处理,经数理统计分析处理前后纤维力学性能指标的测试数据表明:等离子体处理不会对芳砜纶纤维的力学性能形成损伤;处理工艺中时间、功率指数对芳砜纶纤维的断裂伸长率有显著影响.  相似文献   

6.
超高分子量聚乙烯纤维(UHMW-PE)由于结构特性导致其粘接性很差,给高性能轻型复合材料的研制带来困难。本实验采用低温等离子体以及铬酸等对各种拉伸比的UHMW-PE纤维进行表面改性,通过纤维拔出环氧树脂基体测界面粘接强度,利用SEM观察研究了界面脱粘机理。结果表明:经等离子体处理后。界面粘接强度可提高四倍以上,其大小与纤维拉伸比及等离子体处理参数均有关;界面产生的裂纹在纤维内部沿纤维方向扩展,拔出后纤维表面层被剥掉;等离子体处理方法与化学表面处理方法相结合。可望进一步提高界面粘接强度。  相似文献   

7.
为了除去石油加工过程中所产生的含有大量有毒气体硫化氢的尾气,采用常压微波等离子体法研究了在纯氩、纯二氧化碳及氩与二氧化碳混合气体三种载气条件下,微波功率对硫化氢分解效率的影响.含有硫化氢的源气在微波的作用下形成等离子体射流从而被分解成氢气和单质硫.结果表明:一定范围内(400~1 100W)增加微波功率有利于提高硫化氢的分解效率,当微波功率继续增加时,不同的载气(纯氩气、纯二氧化碳、氩气与二氧化碳混合气体)条件下,其分解效率变化趋势不同.在纯氩载气条件下,微波功率继续增加,硫化氢的分解效率会下降;在纯二氧化碳载气和氩气与二氧化碳混合载气条件下,硫化氢的分解效率随微波的继续增加而不变.相同微波功率条件下,载气为氩气和二氧化碳混合气体时,硫化氢分解效率最高,说明二氧化碳载气有利于促进硫化氢的分解.当气源为二氧化碳、氩气及硫化氢混合气体,且流量比为8∶1∶1,总流量为1 000mL/min,微波功率为1 300W时,硫化氢转化率最高达98.64%.从节能方面考虑,在实际应用中微波功率可设定为900W.  相似文献   

8.
利用大气压射频辉光放电装置所产生的低温等离子体对涤/锦双组分复合纤维进行表面处理,可明显改善前处理效果,对涤/锦双组分复合纤维的裂解开纤,有明显促进作用。  相似文献   

9.
利用Ar冷弧等离子体对丙烯酰胺单体进行处理并引发聚合,制备出高吸水性聚丙烯酰胺.研究了放电时间、聚合温度、单体质量分数等对聚合产物吸水性能的影响,实验结果表明在放电时间为90 s,聚合温度为30℃,单体质量分数为30%,后聚合时间为24 h的聚合条件下聚合物的吸水率为340(g/g).  相似文献   

10.
采用低温等离子体对纤维表面进行处理.结果表明,处理后的纤维表面能提高,使环氧树脂能良好地浸润纤维,纤维与树脂的粘结强度提高,制成的复合材料抗冲击性能得到改善,其原因是:由表面引入的多种含氧基团所形成的化学键力,由表面刻蚀坑产生的机械嵌合力.  相似文献   

11.
用大气中低温等离子体提高玻璃表面憎水性的研究   总被引:2,自引:0,他引:2  
用空气中介质阻挡放电 (DBD) 产生的常压低温等离子体对玻璃表面进行憎水性改性,通过测量水接触角、表面电阻和湿闪络电压等研究了 DBD 等离子体处理前后玻璃的表面特性,以及处理电压和处理时间对改性效果的影响。实验结果表明,DBD 等离子体在玻璃表面键合了一层致密的憎水膜。随处理电压和处理时间的不同,改性效果不同,在恒定处理电压下有一最佳处理时间。热老化和化学老化的实验结果表明,所生成的憎水层具有较好的抗老化性能。  相似文献   

12.
采用大气压等离子体喷涂和高速大气压等离子体喷涂技术制备Cu/W涂层,分别对该涂层断面的表面形貌、孔隙率、氧含量和结合强度进行测试分析.结果表明,高速大气压等离子体喷涂技术制备的Cu/W涂层在孔隙率和氧含量方面突显优势.采用高速大气压等离子体喷涂技术制备的Cu/W涂层孔隙率低于3%,且大部分孔径均小于1μm,利用EDS测得的W涂层氧含量为w(O)=0.41%,该值与真空等离子体喷涂制备的W涂层含氧量接近.与真空等离子体喷涂技术相比,高速大气压等离子体喷涂制备W涂层技术的复杂性和制作成本显著降低,在工程应用中实用可行.  相似文献   

13.
研究了低温等离子体表面改性处理牦牛毛对其表面性能的影响.研究结果表明,低温等离子体表面改性处理能够刻蚀牦牛毛纤维表面的鳞片,而且空气等离子体的刻蚀效果优于氧等离子体的刻蚀效果;等离子体处理不会改变牦牛毛纤维的物理性能即拉伸强度.  相似文献   

14.
羊毛低温等离子体处理后的染色性能研究   总被引:13,自引:0,他引:13  
采用低温氧等离子体技术处理羊毛,通过X射线光电子能谱仪分析了处理前后纤维表面元素组成,探讨了经氧等离子体分别处理1、3、5、10和15min后,羊毛的润湿性和染色性能的变化。结果表明,低温氧等离子体处理使羊毛纤维表层的大分子链断裂,并有新的含氧的极性基团形成,增加了纤维表面的亲水性,润湿时间显著缩短;此外,低温氧等离子体处理导致鳞片表层胱氨酸的部分二硫键氧化断裂,羊毛纤维染色寝壁障被破坏,改善了染色性能,表现为上染速率和染色扩散系数提高及染色平衡时间缩短,但未观察到纤维对染料吸附性能的变化。  相似文献   

15.
水针压力对水刺非织造布质量的影响   总被引:3,自引:0,他引:3  
以改变水刺非织造布定量、生产速度、水压分布为实验手段,研究其对水刺非织造布质量的影响。结果表明:不同定量的水刺布,需要与相应的压力相匹配,一定定量的水刺布需要与相应的速度相匹配;对于45g/m^2的合成革基布,水压以“从低到高再降低分布”为最佳选择。  相似文献   

16.
介绍了直流电弧等离子体喷射CVD金刚石膜的沉积原理,探讨了在实际生产过程中获得高质量CVD金刚石膜的工艺条件.  相似文献   

17.
采用直流电弧等离子体喷射CVD法制备出金刚石薄膜,利用扫描电子显微镜(SEM)、Raman光谱及X射线衍射(XRD)等研究基底温度对金刚石厚膜生长特性及内应力的影响。结果表明:950℃基底温度生长的金刚石厚膜结晶性能较好,纯度较高;而850℃和1050℃生长的金刚石厚膜表面呈现大量的孪晶缺陷,结晶度较低,同时出现较多的非金刚石碳,纯度较低。随着基底温度的增加,(111)晶面和(311)晶面的衍射峰强度逐渐增强,(220)晶面的衍射峰强度逐渐降低。850℃和950℃基底温度生长的金刚石厚膜的宏观应力和微观应力都呈现出拉应力,1050℃基底温度生长的金刚石厚膜的宏观应力和微观应力都呈现出压应力。  相似文献   

18.
超高压水射流破岩过程中的应力波效应分析   总被引:1,自引:0,他引:1  
选取200,220和260MPa射流压力和3种岩样,实验研究非淹没条件下破岩效果的宏观规律.针对岩石在超高压水射流作用下的破碎特性,建立球面应力波在岩石介质中传播的波动方程.运用拉格朗日方法描述岩石质点的位移场和速度场.利用Matlab对波动方程进行计算求解,分析超高压水射流冲击下岩石破裂时序演化过程,建立岩石宏观断裂规律与微观破坏机制间的联系.研究表明:超高压水射流作用下岩石的破坏主要表现为拉伸破坏;岩石受力在应力波效应下呈现两种状态,即先拉伸后压缩应力状态与压缩应力状态;理论计算分析与实验结果基本吻合,表明利用该方法分析超高压水射流破岩机理是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号