首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Considering the viscous damping of the soil and soil-pile vertical coupled vibration, a computational model of large-diameter pipe pile in layered soil was established. The analytical solution in frequency domain was derived by Laplace transformation method. The responses in time domain were obtained by inverse Fourier transformation. The results of the analytical solution proposed agree well with the solutions in homogenous soil. The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched. The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil. The smaller the shear modulus, the larger the amplitude of velocity admittance. The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil. The displacements of the piles with the same damping coefficients of the outer soil have less difference. Moreover, the effects of the distribution of soil layers are analyzed. The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer. A larger damping coefficient of the upper layer results in a smaller velocity admittance. The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same.  相似文献   

2.
A computational method and a mechanical model for evaluating the vertical dynamic harmonic response characteristics of a single pile embedded in non-homogeneous soil layers and subjected to harmonic loadings were established based on a certain assumption and the improved dynamic model of beam-on-Winkler foundation by using the principle of soil dynamics and structure dynamics. Both non-homogeneity of soil strata and softening effect of soil layer around the pile during vibration were simultaneously taken into account in the proposed computational model. It is shown through the comparative study on a numerical example that the numerical results of dynamic response of the single pile computed by the proposed method are relatively rational and can well agree with the numerical results computed from the well-known software of finite element method. Finally the parametric studies were conducted for a varied range of main parameters to discuss the effects of relevant factors on dynamic responses of the single pile embedded in non-homogeneous layered soils excited by harmonic loading with different frequencies.  相似文献   

3.
The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.  相似文献   

4.
The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.  相似文献   

5.
In this paper,the soil-pile system of O-cell test of pile is simplified as an axi-symmetric problem.By using aggregation of quadrilateral isoparametric elements to simulate pile and soil,setting Goodman’s elements between pile and soils,a method of numerical simulation analysis on O-cell test of pile is presented with the consideration of nonlinear mechanical behavior of soils and pile-soil interface.The method is applied to the analysis of a case of O-cell test of pile.The load-displacement curves and axial force curves of upper pile and lower pile obtained from the O-cell test of pile are fitted,and parameters of the mechanical model of soils and interface are determined.Analysis results validate that the numerical simulation analysis method put forward in this paper is applicable.Furthermore,the interaction and influence of upper pile and lower pile in the O-cell test are also studied with the method.The result shows that if load box is located in a soil layer with fine mechanical behavior,the interaction of upper pile and lower pile in O-cell test can be ignored generally.  相似文献   

6.
The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.  相似文献   

7.
Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi’s and ЪерезанцевВГ’s methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi’s method gives higher ultimate capacity, while the other two methods shows good agreement with the field results.  相似文献   

8.
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2 × 1) pile group and on the (2 ×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.  相似文献   

9.
By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld.  相似文献   

10.
Effect of soil displacement on friction single pile in the cases of tunneling,surcharge load and uniform soil movement was discussed in details with finite element method.Lateral displacement of the pile caused by soil displacement reached about 90% of the total displacement,which means that P-⊿ effect of axial load can be neglected.The maximum moment of pile decreased from 159 kN·m to 133 kN.m in the case of surcharge load when the axial load increased from 0 to the ultimate load.When deformation of pile caused by soil displacement is large,axial load applied on pile-head plays the role of reducing the maximum bending moment in concrete pile to some extent.When pile is on one side of the tunnel,soil displacements around the pile are all alike,which means that the soil pressures around the pile do not decrease during tunneling.Therefore,Q-s curve of the pile affected by tunneling is very close to that of pile in static loading test.Bearing capacities of piles influenced by surcharge load and uniform soil movement are 2480 kN and 2630 kN,respectively,which are a little greater than that of the pile in static loading test (2400 kN).Soil pressures along pile increase due to surcharge load and uniform soil movement,and so do the shaft resistances along pile,as a result,when rebars in concrete piles are enough,bearing capacity of pile affected by soil displacement increases compared with that of pile in static loading test.  相似文献   

11.
以文安斜坡内带深层为研究对象,应用高分辨层序地层学等方法研究识别隐蔽油藏.通过兴隆1井地层重新划分及高分辨率三维地震应用,将该区沙三、沙四段地层之间重新确定为不整合接触.在三级层序地层框架建立的基础上,刻画各体系域砂体展布特征,构建了坡折带控制沙四下自生自储岩性油气藏成藏模式.通过钻井实践,首次在霸县凹陷发现沙四下段含油层系及新的烃源岩层,实现了深层自生自储式油藏类型的勘探突破.  相似文献   

12.
介绍了变截面梁变形计算的初参数法,运用该方法求密炼机转子的变形,并得到了精确的解。  相似文献   

13.
会计制度规定企业定期或者至少于每年年度终了,对各项资产进行全面检查,合理地预计各项资产可能发生的损失,并计提资产减值准备,既不高估资产或收益,也不少计负债或费用,从而避免虚增企业利润。但在实务中,一些企业却利用会计法规准则中的原则性,通过资产减值准备达到操纵会计利润的目的,本文即是从企业滥用资产减值入手,以实例来揭示企业计提秘密准备的意图,以引起业内人士的重视。  相似文献   

14.
齿轮—五杆机构的轨迹特性研究   总被引:4,自引:0,他引:4  
采用计算机机构动画仿真的方法,对齿轮五杆机构的轨迹特性进行了研究。分析了该机构双曲柄存在的条件,两连杆铰接点C的轨迹曲线可到达的区域及该轨迹曲线形状随机构结构参数的不同而变化的规律,从而为齿轮五杆机构的轨迹综合提供了重要依据。  相似文献   

15.
将一类非线性椭圆方程组的求解问题化归为一给定泛函的临界点问题.利用变分法、经典的极值理论和山路引理证明了给定泛函在各种不同条件下临界点及非平凡临界点的存在性,从而得到了这类非线性椭圆方程组的解及非平凡解.  相似文献   

16.
旅游地环境的可持续发展问题   总被引:4,自引:0,他引:4  
对旅游业的资源型特点,当前旅游业发展对旅游地环境的影响程度,以及不断强化旅游地环境保护的重意义作了精辟地分析.提出了以人为本、突出特色、塑造形象、科学规划和管理的旅游地环境可持续发展的思想和方法.  相似文献   

17.
主要借助螺线特性 ,对一类含间隙分布时滞的种群增长模型特征方程λ +c=d( 1 +λT) -n- 1 e-αλT 的稳定性随T变化而改变的情况作了比较完整的分析讨论 ,并把文献 [3]中主要结论的错误性予以更正和完善 .  相似文献   

18.
从人体形态结构、运动机能及皮肤伸缩方面入手,分析研究了影响服装松量的主要成因,为合理地设计服装的松量提供了有效的方法和理论依据,以使服装的功能性和美观性达到有机结合,松量的研究对服装产品的设计及生产具有实际的意义.  相似文献   

19.
供热锅炉房凝结水回收率是选择离子交换器的已知数据.以前,在计算该数据时,采用的是“试算法”,需要反复计算多次,才能算出凝結水回收率.现在,将锅炉排污率、除氧器所使用的新蒸汽量和软化水量都写成以凝结水回收率为自变量的函数式.将上述函数都代入除氧器的热平衡方程式里,解该方程式,算出凝结水回收率,方法简便.  相似文献   

20.
数学优化方法在新安江模型参数率定中的应用分析   总被引:3,自引:0,他引:3  
以3种数学优化方法及新安江(三水源)模型的理论为依据,介绍了优化方法在新安江三水源模型参数率定中的应用.将率定成果与API模型进行了对比,说明这3种优化方法在大宁河流域参数率定中应用效果良好,具有很好的参考和推广价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号