首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
由于可再生能源具有随机性特点,使得可再生能源发电系统电压稳定性较差。设计了一种基于超级电容器储能系统的大功率、宽工作范围双向DC/AC/DC变换电路,对变换电路进行了原理分析,建立了数学模型,根据可再生能源发电系统直流母线电压的不同运行状态,设计了控制策略,通过控制能量在超级电容器与可再生能源发电系统之间相互传递,提高可再生能源发电系统的电压稳定性。通过仿真分析,验证了设计电路的正确性、控制策略的有效性和运行的灵活性。  相似文献   

2.
直流微电网与交流微电网相比有其独特的优点,在直流微电网中,每个发电单元和储能单元都经过独立的DC-DC变换器,将其产生的电能转换为直流,并且并联在直流母线端,以得到稳定的电力输出。针对超级电容功率密度大、循环寿命长以及蓄电池能量密度高、电压平稳的特点,设计了以光伏电池作为发电单元,超级电容和蓄电池作为储能单元的直流微电网系统,研究了直流微电网的能量管理。实验结果表明:通过超级电容和蓄电池的协调储能可以实现系统中不同工作模式的自动切换,并保持直流母线电压稳定。  相似文献   

3.
微电网是实现主动式配电网的一种有效形式,微电网技术能够促进分布式发电的大规模接入。针对微电网中并网模式和孤岛模式之间的切换,提出一种含复合储能装置的微电网优化控制策略。这种复合储能的微电网优化控制将超级电容器和蓄电池的优点结合到一起,用于由分布式电源作为主控式电源的微电网,以实现微电网平滑切换的目标。利用PSCAD/EMTDC软件对系统进行研究,结果表明:在切换时间、频率、电压上,复合储能均优于蓄电池储能。  相似文献   

4.
储能系统作为一种能量缓存装置,在风光储一体化发电系统中发挥着至关重要的作用。将储能的功能定位于平抑风光输出功率波动。为满足系统对功率和能量两方面的需求,利用超级电容和蓄电池两种互补元件组成混合储能系统对可再生能源出力波动进行两级平抑,提出了基于移动平均算法的控制策略,在此过程中,依据功率波动量大小及储能单元的荷电状态对移动步长进行实时优化。通过对蓄电池和超级电容的灵活、准确、快速控制,实现了风光输出功率波动的平抑,有效改善了风光出力波动引起的电能质量问题,并延长了蓄电池的循环寿命。在PSCAD/EMTDC环境下搭建系统模型,仿真验证了控制策略的有效性。  相似文献   

5.
针对分布式电源(DER)波动性、间歇性及不确定性等导致的交直流微网系统直流侧母线电压波动,提出一种直流母线电压控制策略。采用由交错并联双向DC/DC(直流/直流)变换器与蓄电池组成的储能系统平抑直流侧功率波动及稳定直流母线电压,采用双向DC/AC(直流/交流)变换器实现对蓄电池及直流母线电压的维护控制,采用电压外环电流内环的双闭环控制策略对直流母线电压和蓄电池充放电电流进行控制。利用MATLAB/SIMULINK仿真平台分别搭建不同工作模式下的仿真模型,结果表明所提控制策略可有效抑制直流母线由于光照不稳定所造成的的功率波动。  相似文献   

6.
针对微电网中传统蓄电池储能系统循环寿命短、电压波动大、功率密度低等问题,提出了一种由蓄电池和超级电容器构成的混合储能系统及其控制方法。充分利用两种储能元件的优势,通过设计均压控制策略、功率控制、V/f控制等手段,实现了各蓄电池和超级电容器单体的均压控制;最后建立Matlab/Simulink模型对系统进行仿真。结果表明,该方法减缓了电网负载波动时蓄电池的电流波动,减小了直流母线的电压波动,验证了该方法的可行性。  相似文献   

7.
针对光伏发电出力随机性大,波动较强等问题,提出了一种多能互补系统综合效益最大化控制策略,控制双向DC-DC逆变器实现蓄电池、超级电容器和氢燃料电池充放电,保证直流母线电压的稳定。然后利用蓄电池和超级电容器所具有的能量互补特点,实现对储能系统的优化管理。采用光伏与混合储能协调互补的方法,可以减少储能系统的容量、降低蓄电池循环充放电的次数、延长储能装置的使用寿命,并获得较好的光伏波动平抑效果,相比于常规的控制方法,减少了运行投资成本,具有显著的经济效益。  相似文献   

8.
为解决分布式光伏发电并网时对大电网产生的冲击,在分布式光伏发电系统中加入储能系统,形成混合发电系统,整个系统采用直流微网形式,仅使用一个双向DC/AC换流器,减少了电能损失和控制复杂度。光伏控制采用最大功率跟踪法。换流器并网时采用PQ控制,可平抑光伏功率波动,提高系统稳定性;独立运行时采用V/f控制,为交流侧提供电压和频率参考,蓄电池保证重要负荷的电源供应,实现混合系统与大电网的无缝切换。最后,通过对光伏发电系统不同运行模式转换进行建模仿真,验证了控制策略的有效性。  相似文献   

9.
微电网孤岛运行时,储能系统的主要作用是保持母线电压的稳定. 针对超级电容储能系统运行时存在的超级电容端电压和母线侧负载的参数变化,导致母线电压发生波动的问题,提出了一种鲁棒LQR控制方法. 首先建立变换器的小信号模型; 其次选定超级电容端电压和母线侧负载作为不确定量,利用凸优化理论推导储能系统的多胞体模型; 最后用线性矩阵不等式(LMI)的方法计算出满足约束条件的LQR控制器. 仿真结果表明,当系统存在参数变化甚至外部干扰时,该控制方法能够更快、更好地稳定母线电压,控制效果优于传统的PI控制方法.  相似文献   

10.
针对地铁列车运行状态变化时引起直流电网电压出现很大波动的现象,设计了一种基于非隔离双向DC/DC变换器的超级电容储能系统。采用电压电流双闭环控制方法,建立储能系统充放电控制策略,并搭建储能系统仿真模型。仿真结果表明:车载超级电容储能系统能够达到稳定电网电压和节能的目的,同时验证了控制策略的正确性。  相似文献   

11.
根据风能发电与太阳能发电的相辅特性以及蓄电池的储能特性,构建了一套多电源供电的直流微网系统发电模型.通过对此系统的能量流动及运行特性的分析,提出了此系统的能量管理方案.分别绘制出了直流微网各组成部分的模块方框图以及仿真模型.针对逆变器的拓扑结构得出了其控制的数学模型,采用基于SVPWM的电压电流双闭环控制实现了微网在并网和离网两种运行模式下的稳定运行和自动平滑切换.最后通过仿真测试验证了分布式电源、蓄电池、负载以及电网在不同的工况下此能源控制方案的可行性,实现了此供电系统的稳定运行.  相似文献   

12.
含有储能单元的微电网运行控制技术为可再生能源发电的规模化利用提供高效的组织形式和管理手段.搭建包括光伏、风电、储能单元的典型微电网控制系统;光伏、风机采用最大功率跟综控制,以保证风能和光能的最大利用率;给出含有储能单元的微电网组网方案和运行控制方式,分析储能在微电网并网运行、孤岛运行、孤岛下负荷变化及无缝切换等过程中的能量控制作用;基于LCL滤波器的储能电压源型功率变换器,提出包含逆变器侧电感电流环、滤波电容电压环和电网侧电感电流环的三环控制策略.最后,仿真验证了该储能逆变器控制策略和方法合理有效.  相似文献   

13.
纯电动教练车采用蓄电池作为单一动力电源时,在动力性能、续航里程等方面存在着不足,很难满足高功率密度和高能量密度的要求,而蓄电池与超级电容在性能上具有很强的互补性.将能量密度高的蓄电池与功率密度高的超级电容通过DC/DC变换器连接到直流母线上构成电动教练车的混合动力电源系统,不仅使蓄电池能够避免大电流放电的冲击,延长蓄电池的使用寿命,而且使电动教练车供电系统能满足高能量密度的需求.仿真与实验结果表明,混合能源系统能够有效地增加电动教练车的续驶里程.  相似文献   

14.
为了提高微网并网时稳定运行能力,平抑配电网公共连接点的功率波动与维持功率潮流分布,研究了一种含直流储能的柔性直流输电并网接口系统,根据柔性直流输电和蓄电池数学模型,以直流侧储能单元的充放电与双端功率传输控制和平抑微网并网扰动为目标,提出了基于两段式充电的矢量解耦三环控制及蓄电池的充放电切换控制策略,构建了以蓄电池为储能元件的微网并网系统仿真模型,针对微网内功率变化、蓄电池充放电切换和微网交流系统短路故障等情况进行了仿真分析,结果表明控制策略在保证储能单元的充放电与双端功率传输的基础上,有效地抑制了公共连接点的功率波动,保证了电网潮流分布的稳定。  相似文献   

15.
针对电动汽车行驶里程短和复合电源系统中功率分配的问题,提出了逻辑门限控制策略和模糊逻辑控制策略对复合电源系统进行研究,使蓄电池向电机提供平均功率,超级电容向电机提供瞬时功率和峰值功率。基于常规复合电源模糊控制模型,考虑电机制动和液压制动共同为电动汽车提供制动力,建立新型复合电源系统模糊控制模型。实验结果表明:复合电源相对于单一蓄电池电源在电池SOC、能量回收率和电动汽车行驶里程有很大提升,模糊控制策略相对于逻辑门限控制策略提高了超级电容利用率并且降低了电池电流幅值,更好地保护了蓄电池。  相似文献   

16.
在孤岛运行的低压微电网中,因线路阻抗的不匹配性,导致传统下垂控制无法按照下垂增益精确均分有功功率,各分布式储能单元必然会出现荷电状态(SOC)差异,造成蓄电池过充电或过放电,缩短了储能单元的使用寿命。针对上述问题,提出了一种低压微电网分布式储能系统分级控制策略。首先通过功率平衡级动态调节虚拟阻抗,消除不匹配线路阻抗对有功分配精度的影响;然后,通过SOC平衡级控制,各个储能单元根据其SOC动态调节有功功率,使得SOC误差以e指数曲线下降,最终实现储能单元在放电过程中SOC均衡。采用动态一致性算法,可实现各分布式储能单元的信息共享,提高了系统的可靠性和灵活性。同时,基于小信号理论对所提控制策略进行了稳定性分析,并讨论加速因子对系统稳定性的影响。仿真对比结果验证了所提控制策略的有效性和可行性。  相似文献   

17.
针对目前电动汽车由于蓄电池寿命和续航里程短导致其不能普及的现状,加入超级电容和DC/DC变换器构成复合储能系统,分析了汽车的运行状态,提出了一种改进的逻辑门限控制方法对复合储能系统进行能量控制。利用AVL CRUISE软件建立了整车模型,对能量控制策略进行了城市工况下的仿真验证。以48 V 5 k W的直流无刷电机及其控制器HPC300为载体,搭建了复合储能单元和其控制系统,仿真和实验结果表明该复合储能系统及其控制策略能够避免蓄电池的大电流输出和冲击,提高蓄电池的使用寿命和汽车的续航里程。  相似文献   

18.
超级电容器储能系统具有快速的功率响应能力,是改善以风电、光伏为代表的分布式电源出力品质的有效手段。采用双向DC/DC变换器和DC/AC电压源型变流器作为功率调整装置,实现对超级电容器储能系统功率吞吐和直流侧电压的控制。首先对超级电容器储能系统处于不同工作模式时的能量分布进行分析,在此基础上建立系统的数学模型。以稳定直流侧电压为目标,基于单端稳压双向功率流的控制方法设计了双向DC/DC变流器的控制器;采用双闭环解耦控制方法对DC/AC变流器有功/无功功率解耦控制。基于PSCAD/EMTDC软件搭建仿真系统,结果表明超级电容器储能系统能够实现对指定充放电功率准确快速的响应,直流侧电压工作稳定,工作效率高。  相似文献   

19.
根据蓄电池与超级电容性能特点,提出了一种基于蓄电池和超级电容混合储能的协调控制策略. 采用低通滤波器将波动功率分离为低频与高频,由蓄电池平抑低频部分,超级电容平抑高频部分,进一步设计电压电流双闭环协调控制策略,实现蓄电池与超级电容的分频能量吞吐. 仿真结果表明混合储能系统达到了平抑风力发电功率波动,延长蓄电池使用寿命的目的.  相似文献   

20.
针对未来智能楼宇和家庭的供电需求,提出新型分布式纳米电网的组网结构,主要包含新能源发电模块、储能模块、并网模块、负载模块等.针对直流纳米电网的模块化运行、负载切换频繁的需求,提出基于直流母线电压信号的新型控制策略,实现直流纳米电网内各个模块的即插即用功能.针对多模块协同工作时产生的谐振问题,采用在电流反馈回路中增加低通滤波环节的方法保证在模块接入退出时直流母线电压的稳定.利用Matlab软件的Simulink平台搭建仿真模型并进行系统仿真,仿真结果表明所提控制策略的有效性、可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号