首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
受持续来流影响,在大江大河内形成的堰塞湖极易在数十天甚至数天内漫顶溢流溃决,引发非常态溃决洪水,严重威胁下游沿岸地区人民群众生命财产安全。堰塞湖溃口坍塌变形发展迅速、现场观测难度大,当前普遍难以实地观测堰塞湖溃口形态变化及水力学参数,至今未能获取溃口坍塌发展的真实数据。针对堰塞湖溃决洪水威胁及溃决机理不明等难题,基于堰塞湖溃决过程现场观察及历史堰塞湖溃决案例分析,阐明堰塞体体型、材料级配、库容及上游来水量是决定堰塞体危险性的关键。并以“11·3”白格堰塞湖为原型,分别开展了堰塞湖溃决1∶80室内和1∶20野外物理模型试验,揭示堰塞体溃口发展遵循“流速驱动、流量控制”,以获得较大流速为目标的自我演化机制;溃口坍塌发展的主要动力机制是携沙水流剪切冲刷、陡坎上游负压区涡流掏刷、陡坎下游高速水流冲刷、边坡重力坍塌;堰塞体溃决坍塌依次呈现尾部下切、陡坎溯源、全断面下切、上冲下淤4个发展阶段变化特征,溃口平面形态相应依次呈现线条型、倒喇叭型、双曲面型、近似等宽型4个变化特征。陡坎溯源是溃决前最高效的冲刷方式,也是判断堰塞体漫顶过流后是否溃决的重要标志。开展堰塞湖溢流溃决大型物理模拟试验有助于推动高危堰塞湖应急疏通排水设计和堰塞体坍塌控溃技术发展,为堰塞湖应急处置提供参考。  相似文献   

2.
堰塞坝溃决物理概化试验是当前研究堰塞坝溃决机理较为可行的方法,但在现有堰塞坝溃决试验中,由于试验坝体尺寸较小、试验上游库容不足,导致试验的溃决过程与实际堰塞坝溃决存在较大差异。为尽量克服库容的不足所带来的影响,本文采用了最大库容达380m3的大尺度堰塞坝溃决试验系统。本文以无粘性、宽级配砂砾料堰塞坝为对象开展了多组室内大尺度溃决试验来揭示堰塞坝溃决机理,并通过设置不同背水面坝坡来研究其对溃决过程的影响。通过试验发现堰塞坝溃决过程可以分为沿程冲刷、溯源冲刷、快速发展和溃口稳定四个阶段。在溃决过程中发现陡坎侵蚀和溃口两侧土体失稳坍塌是溃口快速发展的主要机理。不同背水面坡度下的沿程冲刷阶段冲蚀特征基本相似,而溯源冲刷阶段及快速发展阶段溃决过程差异显著,较大的背水面坡度使溯源冲刷阶段跌坎水流更容易得到发展,进而影响溃口处的垂向冲深及侧向发展,导致快速发展阶段更易形成垂向落差较大的陡坎洪水冲蚀。从溃决历时来看,坡度的增加使溃口发展更快、峰值流量出现时间更早,进而导致溃决历时缩短。坝顶溃口宽度及峰值流量也会随着坡度的增加而增加。在本试验还较好地重现了天然堰塞坝下游河道两岸的淤积现象,并根据堰塞坝溃决过程中的水流特点、泥沙运动及溃决完成后下游河道的地貌,初步分析了淤积区的形成机理。  相似文献   

3.
我国是堰塞湖灾害最严重的国家之一,堰塞湖对上游淹没区和下游溃决演进区的人民生命财产安全构成巨大危险,深入掌握堰塞坝冲刷溃决过程可为应急泄流道的设计和下游应急避险措施的制定等提供重要科技依据。本文以2018年金沙江白格滑坡堰塞湖事件为研究背景,采用室内物理模型试验的手段对堰塞坝冲刷溃决过程进行了系统研究。试验结果表明:堰塞坝冲刷溃决过程一般可分为四个阶段:过流孕育阶段、溯源侵蚀阶段、溃坝发展阶段以及河床再平衡阶段,当溯源冲刷的陡坎追溯到上游坡顶,泄流槽进口断面在侵蚀作用下突然拓宽,泄流槽将连通形成底坡i>0的斜坡道,进而导致水流流速和流量突然增大,堰塞坝进入溃决快速发展的阶段。试验进一步探究了泄流槽开挖位置、开挖深度和宽度对溃决过程的影响。研究发现:当泄流槽开挖宽度不变,深度增大时,洪峰流量降低、峰现时间延迟、溃决流量过程线更为平坦;当泄流槽开挖深度不变,随宽度增大峰现时间延迟。最后,对泄流槽的优化设计提出了建议:泄流槽位置宜布置在坝顶高程最低的垭口,以减小洪峰流量,缩短溃决历时;开挖泄流槽时应优先考虑加大泄流槽深度,最大限度地降低溃决时的堰塞湖水位。  相似文献   

4.
强烈地震后的沟内滑坡堰塞坝是泥石流地质灾害的重要物质来源,由于季节性降雨的间歇性和沟道地形的特殊性,泥石流沟内滑坡堰塞坝的侵蚀破坏过程与堵河型滑坡堰塞坝有明显区别,本文以银洞子滑坡堰塞坝为例,对此类堰塞坝的侵蚀破坏特征进行了研究。通过多年的现场地质调查和理论分析,主要得出以下结果:1)银洞子堰塞坝受到的侵蚀效应包括降雨导致的坡面汇流冲刷,溃口水流或泥石流的下切侵蚀、侧向侵蚀和溯源陡坎侵蚀;2)横向巨大高差导致该堰塞坝漫顶溃决时的初始溃口位于坝体侧面,水流或泥石流对溃口边坡的侧向侵蚀过程为单向侵蚀,在这种侧向侵蚀和下切侵蚀共同作用下,堰塞坝的溃口边坡越来越高,堰塞坝的稳定性降低;3)银洞子沟上、下游土体强度不同导致堰塞坝的坡面侵蚀效果不同,下游一侧坝体强度较弱,坡面汇流冲刷导致堰塞坝表面被两道大型拉槽分割,堰塞坝的整体性受到影响;4)银洞子堰塞坝特殊的物质结构导致溯源侵蚀陡坎向上游的发展速度缓慢,堰塞坝的侵蚀过程不一致。在多种侵蚀效应的共同作用下,银洞子沟滑坡堰塞坝下游部分的溃口边坡高度大、完整性差,很可能失稳形成二次滑坡,将导致大量松散物质进入新形成的沟道内,从而为泥石流活动提供物源储备。  相似文献   

5.
堰塞体一般在自然力作用下瞬间形成,堆积体具有空间结构复杂、坝料级配宽泛、稳定性差、易在水流冲刷下发生溃决等特点。堰塞体作为一种重大的水旱自然灾害,其安全评价和灾害预测是国内外学者关注的焦点,目前尚有很多问题需要解决,包括:(1)堆积体由天然宽级配土石料构成,表现出显著的状态相关性,缺乏正确描述这种宽级配堆石料的状态相关剪胀理论与本构模型;(2)堰塞体形成后,会受上游堰塞湖水位抬升、持续非稳定渗流、湖区滑坡涌浪、后期地震等外荷载作用的影响,缺乏稳定性评判的标准和方法;(3)堰塞体缺乏必要的洪水溢流设施,容易发生溃决,且溃决水流冲蚀过程呈明显的非线性特点,溃口水力要素指标呈强非恒定流特征,缺乏反映宽级配堰塞体材料冲蚀机理的溃决过程数学模型。为此,有必要采取现场勘查、多尺度物理模型试验、数值仿真等综合手段开展研究,揭示堰塞体外观形态、内部结构和材料宏观力学特性及其时空变异规律,提出状态相关(级配、孔隙比、应力水平)的宽级配堰塞体材料剪胀方程,建立能适应复杂应力路径的广义弹塑性本构模型与坝体极限平衡分析方法;开展大型水工模型试验和溃坝离心模型试验研究,揭示非恒定流作用下堰塞体材料的动态冲蚀特性与堰塞体溃口演化规律,建立非恒定流作用时溃口动边界条件下的挟砂水流冲蚀方程,提出考虑流固耦合的堰塞体溃决过程数学模型,实现堰塞体漫顶或渗透破坏溃坝全过程水流运动特征、坝料输移规律、溃口演化过程及结构失稳的数值模拟。综合可靠度理论与溃坝过程数值模拟方法,提出能考虑流固耦合的堰塞体渗流、变形、稳定和溃决过程的一体化数值仿真平台,构建堰塞体全生命周期安全评价与灾变模拟理论体系与方法,为提升我国堰塞体防灾减灾决策水平提供科学的理论与技术支撑。  相似文献   

6.
金沙江白格堰塞湖溃决过程数值模拟   总被引:1,自引:1,他引:1  
2018年10月10日和11月3日,在我国四川省与西藏自治区交界处的白格村同一位置连续发生两次滑坡,完全堵塞了金沙江形成堰塞湖。由于“10?10”滑坡形成的堰塞湖水位抬升迅速,堰塞湖于10月12日自然漫顶溃决。“11?03”滑坡堵塞了“10?10”堰塞体溃决形成的流道,形成了更大的堰塞湖,鉴于客观条件允许,采取了开挖泄流槽降低堰塞湖溃决水位的措施,至11月12日,堰塞湖发生漫顶溃决,溃口洪水峰值流量为31000m3/s。由于“11?03”白格堰塞湖溃决案例拥有较为完整的实测资料,为堰塞湖溃决过程的研究提供了宝贵的基础数据。基于堰塞体的溃决机理,建立了可考虑堰塞湖的水动力条件、堰塞体的形态和材料特征的堰塞湖溃决过程数学模型。模型采用宽顶堰公式模拟溃口洪水流量,并根据堰塞湖入湖和溃口流量以及堰塞湖的水位-湖面面积关系曲线确定堰塞湖水位的变化;采用基于水流剪应力和堰塞体材料临界剪应力,并可考虑宽级配堰塞体材料特性的冲蚀公式模拟材料的冲蚀过程;假设溃口在纵向下切和横向展宽过程中坡角保持不变,采用极限平衡法分析溃口在发展过程中发生的边坡失稳;采用按时间步长迭代的数值计算方法模拟堰塞湖溃决时的水土耦合过程。采用建立的模型对“11?03”白格堰塞湖溃决案例进行反演分析后发现,模型计算获得的溃口流量过程、堰塞湖水位变化过程、溃口发展过程与实测值基本吻合。参数敏感性分析表明,冲蚀系数对溃决过程具有重要的影响,残留坝高通过影响下泄库容也对溃决过程产生作用;另外,开挖泄流槽可降低堰塞湖溃决时的库容,从而对溃口流量过程产生影响,是降低灾害损失的有效手段。  相似文献   

7.
地震堰塞湖排险技术与治理保护   总被引:4,自引:2,他引:2  
“5·12”汶川特大地震形成了上百处堰塞体高度大于10 m,蓄水量大于1.0×105 m3,集雨面积大于20 km2的堰塞湖。根据各类堰塞湖因对下游威胁程度、地质、地貌、水文条件、堰塞体规模和颗粒组成制定相应的排险方案。极高危和高危堰塞湖具有潜在的溃坝风险,必须及时排险。相对稳定的堰塞湖及其所在河道则应治理保护。结合北川唐家山、都江堰枷担湾等堰塞湖排险实例,提出了地震堰塞湖排险技术,包括险情勘查、险情评估、排险方案、施工技术。同时,对灾后堰塞湖观测、治理与保护利用提出了建议。  相似文献   

8.
堰塞坝是由滑坡等失稳地质体快速堆积并阻塞河道而形成的天然坝体,溃决后会对下游人民生命财产安全造成严重威胁。深入开展非均质结构对堰塞坝溃决过程的影响研究,可为堰塞坝灾害的风险评估和应急处置提供重要参考。依托自主研发的水槽试验装置,通过开展不同结构类型堰塞坝的溃决模型试验,分析了均质、竖向非均质和水平非均质结构对坝体溃决的影响。研究发现:1)堰塞坝侵蚀过程受局部区域材料性质影响严重。2)均质坝中,随着中值粒径增大,材料抗侵蚀能力增强,溃决特征先由层状冲刷变为陡坎侵蚀,再变为多级陡坎侵蚀,峰值流量逐渐减小,峰现时间逐渐推迟。3)竖向非均质坝中,坝体上部材料主要影响溃口形成阶段历时和坝前水位;中部材料主要影响溃口发展阶段的溃口下切速率;底部材料主要影响下游坡脚稳定性和残留坝体形态。受溃口加速下切和溃决流量增加彼此间相互叠加影响作用,中部及底部材料分布对峰值流量的影响最为显著。4)水平非均质坝中,坝体内部4个区域对溃口发展的影响不同。过流侧上方材料影响溃决前期的溃口下切速率;过流侧下方、对岸侧上方材料分别影响溃决中后期的溃口下切、展宽速率;对岸侧下方材料对溃口发展影响最小。泄流槽设计时,应考虑非均质结构的影响,基于坝体结构特征采用工程措施限制溃口深切、促进溃口展宽,以降低峰值流量。  相似文献   

9.
快速确定堰塞体冲刷模型参数是堰塞湖应急处置中溃决洪水评估的前提。当前通常使用剪应力模型和Wilson模型来预测土体的冲刷速率,但是对模型参数的取值范围尚没有统一认识。为研究两种模型冲刷参数与常规土性参数的关系和各类土体冲刷参数的范围,快速确定堰塞体冲刷模型参数,本文共收集了279组冲刷试验数据,并根据土的统一分类系统(Unified Soil Classification System)将数据分为粗、细颗粒土两类,然后通过相关分析和回归分析得出了冲刷参数与常规土性参数的关系式,并根据关系式的拟合优度(R2、MSE)、可信度(Fvalue/Fstatistic)和泛化能力(10折交叉检验)进行筛选,得出了粗、细颗粒土冲刷参数与常规土性参数的回归方程,并对比试验数据得到的冲刷参数与回归方程预测得到的冲刷参数,得出了不同土料的冲刷参数范围。最后以白格堰塞体为例,依据本研究建立的冲刷参数数据库及统计关系,对其冲刷参数和冲刷速率进行了分析。结果表明,本研究成果可以用以快速确定堰塞体的冲刷参数,为应急处置条件下快速评估溃决洪水风险提供技术支持和数据支撑。  相似文献   

10.
我国西南地区多为高山峡谷地貌,易发生滑坡堵江事件,形成堰塞湖。堰塞湖水位壅高过程中,堰塞体为常剪应力路径,即剪应力保持不变,孔隙水压力不断增大。但已有的研究主要集中于固结排水剪和固结不排水剪,与堰塞湖水位壅高过程中的实际应力路径有别,因此开展常剪应力路径下堰塞体材料的变形特性研究,是深入分析湖水位壅高过程中堰塞体动态响应的有效途径。鉴于此,本文以2018年10月11日白格堰塞湖为例,以堰塞体的实际高度、漫顶前的最高堰塞湖水位及湖水位壅高过程中的实际应力路径为基础,基于细观尺度的离散元(DEM)—孔隙有限体积法(PFV)流固耦合方法,从敏感性分析的角度出发,开展了不同围压、不同初始应力条件下堰塞体土料的常剪应力剪数值模拟试验,并从材料的应力应变关系(宏观)及内部接触力(微观)的分布规律等角度出发,揭示了湖水位壅高过程中堰塞体不同位置的变形响应及其微观力学机理。研究表明,湖水位壅高条件下堰塞体土料变形特性受到土料位置、强度和湖水位壅高程度的联合影响。处于堰塞体不同位置的土料,围压与初始应力比条件不同,并且在堰塞体漫顶之前所遭遇的最大孔隙水压力也不同,从而导致在堰塞湖水位壅高过程中,不同位置的堰塞体土料呈现出不同的变形特性,一般呈现由里及外变形逐渐增大的规律。在相同围压条件下,靠近堰塞体上游外缘的土料,初始应力比相对较高,且遭遇的最大孔隙水压力也相对较高,从而在堰塞湖水位壅高过程中其应力路径会穿越失稳线,导致颗粒之间的接触力减弱,从而产生较大的变形,且大变形区的厚度与范围受到初始应力比及最高湖水位的限制。堰塞体内部初始应力比相对外缘较少,在湖水位壅高过程中应力状态穿过失稳线的可能性降低,从而变形也相对较小。  相似文献   

11.
三峡工程近坝库岸滑坡变形监测方法试验研究   总被引:5,自引:0,他引:5  
通过试验研究表明:对滑坡变形机制研究或精度要求较高时,采用测量机器人(Georobot)技术是目前最理想的方法;若只对滑坡的长期趋势进行监测或精度要求较低,且滑坡范围较大时,采用GPS技术加测地面边的方法有较大优越性。三峡工程近坝库岸野猫面滑坡宜采用Georobot监测,而黄腊石滑坡监测用GPS加测地面边的方法更好。  相似文献   

12.
详细介绍了三峡库区马家屋场后坪滑坡体的特征,收集了大量软弱结构面资料,研究了各软 弱结构面的组合关系,运用优势面理论,合理解释了该滑坡体的成因。采用剩余推力法,对滑坡体在各 种不同工况下的稳定性作了科学分析,并对滑坡体在三峡水库蓄水以后的稳定性作了合理预测,结果表 明,滑坡体在目前状态下基本稳定,三峡水库蓄水以后,将对滑坡体稳定性产生较大影响,极有可能导致 滑坡体失稳。  相似文献   

13.
堰塞体是由崩塌、滑坡、泥石流、冰碛等形成的结构松散的堆积体,且多由宽级配无粘性土组成,易在上游水位抬升过程中产生渗透破坏,从而导致溃决,对下游居民财产与生命安全造成严重威胁。基于离散元和流体动力学(CFD-DEM)相耦合的数值模拟方法是研究堰塞体渗透破坏过程及颗粒冲蚀规律等的有力工具,但CFD-DEM耦合计算方法需要不断的交互计算及数据传递,导致计算量大,计算速度较慢。本文基于堰塞体颗粒材料在渗透破坏过程中的受力特征,在分析渗透破坏过程中流体对颗粒作用力的基础上,利用加速度场与拖曳力的简化形式表征流场作用力,提出了一种简化的渗透破坏离散元快速模拟方法。该方法可以将堰塞体颗粒在渗流场中所受的作用力,直接以加速度场的方式施加在DEM模块中,减少了传统CFD-DEM耦合方法中的双模块交互迭代所需要的计算量,从而在保留CFD-DEM耦合方法计算效果的基础上,有效提升计算效率。最后针对宽级配无粘性堰塞体土料,利用简化后的理想不连续级配颗粒模型,对比CFD-DEM耦合方法计算结果,对本文所提出的快速模拟方法的合理性和有效性进行了验证。研究结果表明,在试样细颗粒流失量随运行时步的变化值与变化趋势方面,简化模拟方法与CFD-DEM耦合方法基本一致,流失量误差不超过3.4%,这表明了本文所提的简化模拟方法的可靠性。当对某一具体的堰塞体颗粒采取简化模拟方法进行模拟时,误差的具体量值可能会发生变化。在计算速度方面,快速模拟方法在本文模拟中的运行速度约为CFD-DEM耦合模拟方法的3.5倍,且当颗粒数量越多时,简化模拟方法的计算速度提升越明显。  相似文献   

14.
高速远程滑坡碎屑流具有极高的动能和超远移动距离,是一种危害范围广、破坏力极大的地质灾害。目前研究多基于高速远程滑坡的效应机理,对于拦挡结构减灾作用研究较少,尚未形成完善的高速远程滑坡减灾体系,而数值模拟是研究碎屑流拦挡结构减灾作用的重要手段。本文采用数值流形方法对牛圈沟强震诱发滑坡所形成的高速碎屑流运动过程进行了模拟,分析其堆积状态以及运动特性,通过数值试验研究了碎屑流运动路径上植被覆盖、拦挡墙高度、位置以及布置方式对高速远程滑坡碎屑流堆积状态的影响,并对拦挡墙的减灾作用进行评价。不同于颗粒离散元方法,数值流形方法可以模拟任意形状块体相互接触、碰撞,从而避免了运动过程中圆颗粒滚动摩擦对模拟结果的影响。模拟结果表明,尽管在碎屑流运动路径上增加植被覆盖可降低碎屑流运动距离,为达到更好拦截碎屑流的效果,仍需在运动路径上布置拦挡墙,以有效降低碎屑流的沿程位移及远程堆积量。当拦挡墙布置于不同位置时,对滑坡碎屑流有不同的截流阻滑作用,并确定拦挡墙的最优位置。此外,相对于增加拦挡墙高度,设置多排拦挡墙可更加有效地拦截碎屑流以减少对下游的危害。  相似文献   

15.
膨胀土的工程特性对开挖边坡稳定性的影响   总被引:1,自引:0,他引:1  
描述了安徽膨胀土层的胀缩特性及其它物理力学性质,说明这种土层具有胀缩、裂隙及超固结的特性。结合本地区于六七十年代开挖而相隔数十年以后发生的几个典型滑坡,从土层埋藏条件、工程地质条件及滑坡治理的实践,分析了膨胀土开挖边坡的滑坡成因、滑动面形态特征及滑坡治理效果。并就膨胀土地区的开挖边坡中与稳定性有关的几个问题:抗剪强度和强度衰减软化、开挖边坡设计及滑坡治理方法的选择等进行了探讨。  相似文献   

16.
潜在滑坡的判识是滑坡预测预报中的关键问题,潜在滑坡早期判识能够有效减少灾害的发生。基于滑坡灾害诱发的各种影响因素,利用地球多源时空信息和多传感器网络,遥感监测潜在滑坡体,利用监测设备获取滑坡岩性、坡体结构、地貌形态、活动迹象等关键控制信息,从中选取滑坡灾害诱发的主要控制要素作为判识指标,建立基于多源信息的潜在滑坡多因素判识模型;特别是根据滑坡的成灾规律,分析潜在滑坡孕育过程中地貌形态改变、成灾条件变化与滑坡发生的临滑诱发条件,建立基于不同信息源的滑坡控制因素判识模型。最后,通过汶川地震灾区垮梁子滑坡体实例分析,验证潜在滑坡综合判识模型并进行优化,从而为滑坡灾害的早期判识预测提供依据。  相似文献   

17.
为研究均质黏土滑坡的运动特性,根据黏土滑坡特性定义圆弧形滑动面为最危险滑移面,基于质心法的运动假设,建立失稳后滑坡的物理运动模型,依据滑坡运动过程中功能转换关系,推导出滑坡滑动距离的预测公式,通过计算获取其运动加速度、速度、滑动距离等动力学参数,并将该方法计算得到的结果与雪橇模型结果对比。结果表明:均质黏土滑坡运动加速度在极短的时间内达到最大,而后逐渐降低;滑坡的运动速度在最初阶段增加较快,此后逐渐减小直至滑坡停止;该方法得到的最终水平滑动距离与雪橇模型计算结果基本一致,相对误差较小,仅为1.2%。  相似文献   

18.
堰塞坝是由崩塌、滑坡、泥石流等斜坡失稳体堵塞河流而形成的天然坝体。我国是堰塞坝的高发区,在作者统计的全世界范围内堰塞坝案例中,发生在我国的高达758例,占比59%。近年来,频发的地质构造活动和极端气候灾害(台风、暴雨、融雪等)诱发了大量的堰塞坝,严重威胁所在流域的生命财产安全。崩滑碎屑体堵江形成的堰塞坝通常结构松散、稳定性差、溃决程度大、溃决速度快,容易形成巨型洪灾,对下游生命财产造成更大危害。首先简要总结了一般堰塞坝堵江研究,阐明了崩滑型堰塞坝成坝特点。然后分析崩滑碎屑体运动及破碎机理和碎屑体堵江成坝机理研究,明确了颗粒破碎和水流条件对坝体形态特征、物质组成和稳定性的作用。崩滑碎屑体堵江通常有3种成坝模式:滑入型、爬高型和折返型,不同类型堰塞坝的稳定性具有显著差异。堰塞坝的稳定性与坝体关键特征参数(几何形态、坝体结构和物质组成)密切相关,而坝体特征参数又主要由崩滑体在运移过程中碰撞破碎和入河堵江时的固液耦合作用共同决定。考虑上述两种因素,结合物源性质、边坡地形、河谷及水流条件,本文提出了成坝影响因素与堰塞坝的空间形态、结构特征及稳定性的内在关系的研究思路,以便建立基于坝体稳定性快速评价的坝体特征预测模型。本研究的开展可为堰塞坝形成前坝体特征的事先预测以及堰塞坝形成后坝体稳定性的快速评估等方面的研究与实践提供重要理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号