首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
设计了一种用于UPS的飞轮储能系统,简述了其系统结构,研究了高速飞轮充放电的控制策略.飞轮储能系统主要由高性能DSP、功率智能模块IPM组成控制系统,以PWM整流和PWM逆变电路组成实时控制充电主电路,采用空间电压矢量脉宽调制的控制方案;放电主电路采用PWM整流、直流升降压电路组成.充电时采用速度-电流-电压三闭环反馈控制,放电时采用电压-电流双闭环反馈控制.对飞轮电池充放电过程进行了仿真,仿真结果表明该系统具有良好稳态性能和动态调节特性.  相似文献   

2.
超级电容器储能动态电压恢复器的仿真研究   总被引:1,自引:0,他引:1  
在建立基于等效电路的超级电容器储能系统的数学模型基础上,设计了一种超级电容器储能的动态电压恢复器(DVR).该恢复器以超级电容器为直流储能单元,采用3个单相全桥式电压型变换器进行前馈补偿控制,半桥式电压型双向DC/DC变换器进行双闭环反馈控制,使得对电压骤升也具有抑制作用.应用Matlab软件进行仿真分析,验证了DVR拓扑结构及其控制策略的正确性和有效性.  相似文献   

3.
探讨了蓄电池/超级电容器混合储能系统的建模与控制问题.将储能系统接入配电网中,通过逆变器控制单元双向调节储能系统的有功和无功功率,达到改善接入配电网公共连接点处电能质量的目的.在逆变器控制单元中,采用将电压闭环控制和功率补偿控制相结合的方法.该控制方法可充分发挥蓄电池/超级电容器各自的特点,减小电压波动和负荷波动的影响.采用Matlab Simulink进行仿真,表明混合储能系统可有效地改善配电网的电能质量.  相似文献   

4.
超级电容器储能系统具有快速的功率响应能力,是改善以风电、光伏为代表的分布式电源出力品质的有效手段。采用双向DC/DC变换器和DC/AC电压源型变流器作为功率调整装置,实现对超级电容器储能系统功率吞吐和直流侧电压的控制。首先对超级电容器储能系统处于不同工作模式时的能量分布进行分析,在此基础上建立系统的数学模型。以稳定直流侧电压为目标,基于单端稳压双向功率流的控制方法设计了双向DC/DC变流器的控制器;采用双闭环解耦控制方法对DC/AC变流器有功/无功功率解耦控制。基于PSCAD/EMTDC软件搭建仿真系统,结果表明超级电容器储能系统能够实现对指定充放电功率准确快速的响应,直流侧电压工作稳定,工作效率高。  相似文献   

5.
针对地铁列车运行状态变化时引起直流电网电压出现很大波动的现象,设计了一种基于非隔离双向DC/DC变换器的超级电容储能系统。采用电压电流双闭环控制方法,建立储能系统充放电控制策略,并搭建储能系统仿真模型。仿真结果表明:车载超级电容储能系统能够达到稳定电网电压和节能的目的,同时验证了控制策略的正确性。  相似文献   

6.
电动汽车的充电系统性能取决于整流和充电控制环节,其充电效率及稳定性对电池的寿命、电池容量产生很大的影响.为了提高整流电压输出的稳定性和电池的充电效率,其整流模块采用电流前馈解耦PWM,该方法通过电压外环和电流内环控制以减少整流中的谐波分量并稳定输出电压.针对充电模块控制策略则采用阶段性充电方式即先用电流单环控制的恒流限压充电,当达到设定的电压值后转为恒压限流的双闭环控制充电方式.运用Matlab/Simulink实现电动汽车蓄电池充电模型,并与单一的恒流、恒压两种充电控制策略进行对比.由仿真结果可知,电流前馈解耦PWM整流电压稳定性优于电压型PWM.此外,也验证了阶段性充电控制充电方式对蓄电池的影响较小,具有充电效率较高的优越性.  相似文献   

7.
为了充分利用光伏发电和混合储能技术来解决无线传感器网络系统的供电电源问题,设计了以超级电容器和锂电池为混合储能装置的独立光伏供电系统。首先根据负载情况选择相应规格的超级电容器、锂电池组和光伏电池,同时采用双向DC-DC变换电路作为系统充放电主电路,并对充放电过程采用电压和电流双闭环控制。最后,利用MATLAB/Simulink对所设计的供电系统进行仿真建模与分析,仿真结果表明基于超级电容器和锂电池混合储能的光伏供电系统不仅能为无线传感器网络系统提供稳定的电源,还能有效地保护锂电池、延长其使用寿命。  相似文献   

8.
针对微电网中传统蓄电池储能系统循环寿命短、电压波动大、功率密度低等问题,提出了一种由蓄电池和超级电容器构成的混合储能系统及其控制方法。充分利用两种储能元件的优势,通过设计均压控制策略、功率控制、V/f控制等手段,实现了各蓄电池和超级电容器单体的均压控制;最后建立Matlab/Simulink模型对系统进行仿真。结果表明,该方法减缓了电网负载波动时蓄电池的电流波动,减小了直流母线的电压波动,验证了该方法的可行性。  相似文献   

9.
针对逆变电源带非线性负载时波形失真的问题,建立了单相全桥逆变控制的仿真模型.系统利用电压电流双闭环反馈与重复控制相结合的控制方案来提高系统的动态响应性能和稳态精度,最后在MATLB仿真平台下建立控制系统的仿真模型并对其进行仿真研究.仿真结果表明,重复控制能很好地消除周期性干扰及其它非线性负载引起的波形畸变.  相似文献   

10.
基于SVPWM的电机控制系统仿真研究   总被引:2,自引:0,他引:2  
在分析电压空间向量(SVPWM)的基本原理的基础上,利用Matlab6.5软件建立了PMSM矢量控制系统仿真模型.系统采用双闭环控制,电流采用PI控制,以及速度采用PID控制.仿真结果表明,采用SVPWM供电的PMSM变频调速系统有好的动态性能和稳态精度.  相似文献   

11.
城市轨道交通站间距较短、运行密度大,列车需要频繁的启动和制动,列车在启动时需要大量能量,导致直流牵引网电压下降;列车在再生制动时产生大量能量,导致直流牵引网电压升高,严重时还会使再生制动失效。针对这一问题,提出将双向DC-DC变换器应用于超级电容储能系统中,并设计了电压外环、电流内环的双PI控制策略。利用Matlab/Simulink搭建了双向DC-DC变换器和超级电容储能系统的仿真模型,分析了双向DC-DC变换器在Buck模式、Boost模式下的运行情况以及电压外环、电流内环的双PI控制策略的控制效果。仿真结果验证了双向DC-DC变换器能够实现能量的双向传输和控制策略的有效性。  相似文献   

12.
针对传统的双PI控制存在电流谐波高、系统稳定性差以及响应速度慢的不足,提出了一种基于Lyapunov函数的T型并网逆变器的控制策略。在分析T型逆变器数学模型的基础上,设计了电压-电流双闭环控制回路。从稳定性角度出发,针对电流内环提出了基于Lyapunov函数的非线性控制策略,以实现谐波参考电流的快速跟踪;外环采用传统的PI控制,以实现对直流侧电容电压的跟踪;同时,将电压外环输出的d轴期望电流作为电流内环的变量输入,以提高双环的抗扰动性。最后,将提出的新型双环控制策略与传统的双PI控制策略进行了仿真比较,验证了所提策略在补偿谐波方面的优越性。  相似文献   

13.
为了进一步提高操作电源的稳定性,设计了一种基于AT89S51单片机控制的UPS-220V/3A电力操作电源系统.该系统主要由整流、直流变换、智能控制三大部分组成.首先整流部分利用该电路特有的两个控制环相互作用提高输入侧功率因数;然后直流变换部分采用高频逆变电路、高频变压器以及全波整流相组合以实现稳定的直流输出;通过输入模块和显示模块,调整充电电流等级和控制充电模式并进行显示;最后控制部分利用AT89S51单片机采集信号并进行处理,通过控制高频逆变模块来控制系统的稳定以及实现输出电压的可调.该操作电源系统在市电输入时能稳定电压;当市电断开或输入异常时,可对负载进行零时间切换供电.结果显示输出电压偏差在±0.5%以内,输出纹波系数在0.1%以内,供电稳定,负载正常运行.  相似文献   

14.
在Z源风力发电系统中,当电网电压发生对称跌落时,会导致Z源网络电容电压上升和交流侧过电流,严重威胁风电机组和变流器的安全,破坏系统的稳定运行。针对这一问题,提出一种适用于Z源永磁直驱发电系统在电网电压对称跌落情况下的故障穿越策略。详细分析了Z源永磁直驱系统的工作原理,建立了Z源逆变器的数学模型。在电网电压正常情况下,运用Z源电容电压外环控制和电流内环控制的双闭环控制策略,实现Z源风力发电系统的单位功率因数并网运行;在电网电压发生三相对称跌落的情况下,分析功率流动情况,将耗能crowbar电路并联在Z源网络输入端,以实现系统的低电压穿越,从而保持恒定的Z源电容电压和稳定的交流侧电流。最后,在Matlab/Simulink中搭建模型进行系统仿真,仿真结果验证了所提方法的有效性。  相似文献   

15.
介绍电动汽车充电系统对电网的谐波影响.采用三电平PWM整理器对谐波进行抑制,设计电压电流双闭环的三电平PWM整流电路.分别对输出直流电压和输入电网电压和电流采样,经过PI调节器控制,使输出电压波形稳定,并使电网侧电流和电压达到基本同相,从而减小充电机对电网的谐波影响,提高单位功率因数.  相似文献   

16.
根据蓄电池与超级电容性能特点,提出了一种基于蓄电池和超级电容混合储能的协调控制策略. 采用低通滤波器将波动功率分离为低频与高频,由蓄电池平抑低频部分,超级电容平抑高频部分,进一步设计电压电流双闭环协调控制策略,实现蓄电池与超级电容的分频能量吞吐. 仿真结果表明混合储能系统达到了平抑风力发电功率波动,延长蓄电池使用寿命的目的.  相似文献   

17.
微电网孤岛运行时,储能系统的主要作用是保持母线电压的稳定. 针对超级电容储能系统运行时存在的超级电容端电压和母线侧负载的参数变化,导致母线电压发生波动的问题,提出了一种鲁棒LQR控制方法. 首先建立变换器的小信号模型; 其次选定超级电容端电压和母线侧负载作为不确定量,利用凸优化理论推导储能系统的多胞体模型; 最后用线性矩阵不等式(LMI)的方法计算出满足约束条件的LQR控制器. 仿真结果表明,当系统存在参数变化甚至外部干扰时,该控制方法能够更快、更好地稳定母线电压,控制效果优于传统的PI控制方法.  相似文献   

18.
针对三相电压型PWM整流器提出一种新型的双闭环控制策略。基于同步旋转坐标系下PWM整流器的数学模型,利用反向解耦方法实现电流环的完全解耦,且避免了复杂的矩阵求逆运算;根据内模控制(internal model control, IMC)原理,设计了电流环IMC-PI控制器,该控制器仅有一个可调参数;在电压外环控制器的设计中,将IMC与分数阶控制(fractional order control, FOC)相结合,给出一种分数阶内模控制器的设计方法,并利用系统截止频率和最大灵敏度指标,实现了控制器参数的鲁棒整定。仿真结果表明,所提方法可使系统具有更好的动态响应及抗扰性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号