首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用真空熔炼、高能球磨、冷压成型和气氛烧结工艺制备了Pb掺杂的P型Bi_(0.5)Sb_(1.5)Te_3块体热电材料.利用X射线衍射仪(XRD)、扫描电镜(SEM)、热电参数测试系统(Namicro-3)、激光热导仪(LFA-467)和DSC等测试技术,研究了Pb掺杂对Bi_(0.5)Sb_(1.5)Te_3热电材料的物相组成、表面形貌和热电性能的影响.结果表明:Pb掺杂能够抑制单质Te的析出及Pb原子取代Bi/Sb原子的位置,产生空穴,载流子浓度增大,电导率升高,Pb原子半径与Bi/Sb原子半径不同,增加晶格畸变,降低热导率,从而有效提高Bi_(0.5)Sb_(1.5)Te_3热电材料的综合性能.在300K时,Pb_(0.003)Bi_(0.497)Sb_(1.5)Te_3的电导率为8.35×10~4 S/m,塞贝克系数为179μV/K,热导率为0.716 W/(m·K),热电优值达到1.122.  相似文献   

2.
Bi_2Te_(2.7)Se_(0.3)/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering in order to improve the thermoelectric and mechanical properties of n-type Bi-Te thermoelectric material. After electroless plating, with the increasing of Cu content, Seebeck coefficient keeps increasing and power factor enhances significantly. The highest power factor increases by three times and reaches 23.8 W·cm-1·K-2 at room temperature in Bi_2Te_(2.7)Se_(0.3) with 0.22 wt%Cu sample, which means electrical transport properties of Bi_2Te_(2.7)Se_(0.3)/Cu samples have been improved.Meanwhile, the ZT values of Bi_2Te_(2.7)Se_(0.3)/Cu samples can be enhanced at different temperature zone by adjusting the Cu content. Bi_2Te_(2.7)Se_(0.3) with 0.05 wt% Cu sample has the best thermoelectric properties in high temperature zone, and the ZT peak value increases from 0.35 to 0.85 at 623 K. When the Cu content increases to 0.15 wt%,the ZT peak value moves to the low temperature(373 K) and increases from 0.24 to 0.71. At the same time, the mechanical properties increases with the increasing of Cu content.  相似文献   

3.
通过粉末烧结、高能球磨和直流快速热压相结合的工艺制备高熔点half-Heusler合金TaCoSb,热电性能测试结果表明TaCoSb是一种n型热电材料,电导率、热导率、塞贝克系数、ZT值在973 K时分别为0.58×105 S·m-1、3.8 W·m-1 K-1、-110 μV· K-1、0.18。此外,本文还研究了Sb位进行Sn掺杂对TaCoSb热电性能的影响,实验结果发现:Sn掺杂使得样品的热导率和电导率同时下降,塞贝克系数略微增加,功率因子有所降低,最终材料的ZT值未见明显提升;鉴于TaCoSb的室温电导率较低,应该往Sb右侧方向掺杂改性。  相似文献   

4.
热电材料可直接在电能与热能之间直接转换,其在室温附近的应用广受关注。材料性能可由与效率正相关的热电优值ZT衡量。高ZT值热电材料需同时具有较低的晶格热导率、恰当的载流子浓度、合适的能带结构和理想的微观组织。本文综述了Bi_2Te_3系、α-MgAgSb以及half-Heusler合金等几种高ZT值室温热电材料的最新研究进展,并就未来研究做出展望。Bi_2Te_3基材料是目前为止研究最为广泛的室温热电材料。Bi_2Te_3空间群为R3m,在c轴方向形成以共价结合的Te-Bi-Te-Bi-Te为重叠单元的层状结构,单元与单元之间以范德华力结合。这一晶体结构使得该材料禁带宽度为0.15 eV,价带顶或导带底为6重能谷,从而同时具备了较高的电导率和Seebeck系数。也由于该材料中包含了重元素和弱键合,其晶格热导率比较低。因此,以Bi_2Te_3为基础形成了性能较好的p型(Bi_2Te_3)-(Sb_2Te_3)和n型(Bi_2Te_3)-(Bi_2Se_3)赝二元体系。p型Bi_2Te_3基材料方面,受超晶格材料极低热导率(~0.22 Wm~(-1)K~(-1))的启发,任志锋和陈刚联合课题组率先用简单的球磨加快速热压工艺在p型Bi_(0.4)Sb_(1.6)Te_3块体材料中获得了5~50 nm的晶粒,增强了声子散射,降低了晶格热导率,使ZT峰值达到了1.4。自此以后,多种引入纳米复合物以增强声子散射的研究得以开展。2015年,韩国Kim课题组甚至将Bi_(0.5)Sb_(1.5)Te_3晶格热导率降低到了0.33 Wm~(-1)K~(-1),使该材料ZT峰值达到1.86,遗憾的是该结果未能被其他课题组重复。最近有研究表明,这一优异性能并非来源于Kim课题组所称的对中频声子的有效散射,而是忽略了各向异性导致的。另一个有趣的现象是性能优越的p型(Bi_(1-x)Sb_x)_2Te_3材料通常在x=0.75附近出现。以前曾有人认为这是由于此时价带平坦化后有效质量增加的原因,但G.J.Snyder等认为这是由于x=0.75时,第一价带与第二价带重叠,从而增加了参与输运的能带数量输运导致的。数据表明,这一模型与实验结果更吻合。相对于Bi_2Te_3基p型(Bi_2Te_3)-(Sb2Te3)材料,n型(Bi_2Te_3)-(Bi2Se3)材料则性能略低(ZT~1.2)。这主要是因为:该类p型材料可通过调控晶格缺陷来调控载流子浓度,而n型则通常只能通过掺杂来调控;p型材料在Bi/Sb为0.5/1.5时声子散射最强烈,同时还发生能带聚集;p型材料中电导与热导各向同向,而n型则各向异性,使得组织结构纳米化对降低n型材料热导率效果甚微。α-MgAgSb是2014年才进入人们视野的高性能室温热电材料,具有四方晶系结构,兼具低晶格热导率和高功率因子,因而峰值ZT达到1.4。近年来,对该材料结构的深入研究揭示了其晶格热导率低的原因:晶胞体积大、Ag-Sb间的弱键合、高密度Ag空位、Ag~+和Mg~(2+)的迁移引起的横声子模软化、U过程中强烈的非谐作用(大Grüneisen因子)、宽频声子散射等。独特的晶体结构决定了α-MgAgSb独特的能带结构。价带顶附近,其聚集能谷数为8,而导带底附近则为1,因而,仅p型α-MgAgSb热电优值较高。对该材料,通过掺杂提高载流子浓度以优化功率因子是必要的手段。在众多掺杂元素中,Li掺杂效果最好,可使载流子浓度和功率因子分别达到~1.2×1020cm~(-3)和~24μW cm~(-1)K~(-2)。由于其优异的性能和与Ag电极之间的低接触电阻,单臂p型α-MgAgSb器件拥有目前为止室温附近最高的热能-电能测试效率8.5%。Half-Heusler是另一类在热电发电领域极具前景的材料,除了具有较高的热电性能外,该材料稳定性和机械性能还异常好。最近的研究表明,常规材料中占主导作用的电子-声子耦合在该材料中被大幅度抑制是其高功率因子的起源;p型ZrCoSb和n型ZrNiSn功率因子分别可达~30和~50μW cm~(-1)K~(-2),而p型Nb_(0.95)M_(0.05)FeSb(M=Ti,Hf,Zr)更是高达100μW cm~(-1)K~(-2)。然而,由于该类材料热导率很高,使得其室温ZT仅0.3左右。尽管室温热电材料研究取得了明显的进展,但仍需在以下方面进行攻关:降低n型Bi_2Te_3基热电材料热导率使其ZT值可与p型同系材料匹配;寻找可在机械性能、热电性能上与p型α-MgAgSb匹配的n型MgAgSb或类似材料;降低NbF eS b基材料热导率及寻找其n型配对材料。  相似文献   

5.
以机械合金法合成PPP/ZnO (聚对苯撑/ZnO)纳米复合材料。PPP/ZnO经球磨后混合充分,聚对苯撑将ZnO块体完全分割。热电性能研究表明:添加聚对苯撑后,复合材料塞贝克系数大大降低,当聚对苯撑添加量的质量分数大于2%时,纳米复合材料的塞贝克系数均低于100μV · K?1,远低于传统合金类热电材料的相应值;而复合材料的电导率却随聚对苯撑添加量增加而增大,当聚对苯撑添加量的质量分数增加到4%时,750 K下的电导率上升至2500 S · m?1,较单一材料的电导率提高5倍以上。复合材料的热导率较纯ZnO(10 W · m ?1· K?1)大大降低,并随聚对苯撑添加量的增加而降低,当其添加量的质量分数为4%时,其复合材料在800 K时的热导率可降至1.6W·m?1·K?1。  相似文献   

6.
利用化学沉积技术在云母衬底上制备Bi_2Te_3薄膜,采用光学显微镜研究不同的制备条件对Bi_2Te_3薄膜样品形貌的影响,并使用X射线衍射仪、扫描电子显微镜、能谱仪和Seebeck系数电导率测试仪分析Bi_2Te_3薄膜的物相、厚度、元素含量和热电参数。实验结果表明,在蒸发源温度为525℃、携带气流流速为30sccm、生长压力为50Pa的最佳条件下制备出高质量连续、室温功率因子为48.2μWm~(-1)K~(-2)的Bi_2Te_3薄膜。  相似文献   

7.
用固相反应法合成Bi_2Ca_(2-x)Sr_xCo_2O_y热电材料粉体,通过冷压烧结制备块体试样,采用DX-2500型X线衍射仪分析材料的物相,利用LFA-457、ZEM-3测量材料从室温到973 K的热电性能,研究掺Sr对样品物相组成与热电性能的影响。结果表明,掺Sr后Seebeck系数没有显著变化,但降低了材料的热导率和电阻率,从而提高了材料的功率因子和热电优值ZT值,改善了材料的热电性能。  相似文献   

8.
采用化学气相沉积法(CVD)在云母基片上制备了由高结晶度的纳米片组成的Bi_2Se_3薄膜。系统研究了基片不同温区、沉积时间及补偿Se对薄膜结构、形貌及热电性能的影响。研究结果表明,在加热温度为520℃、加热时间为30min条件下制备出了由三角形纳米片组成的Bi_2Se_3薄膜,纳米片边长为10μm,薄膜厚度为1.25μm。在室温时,Bi_2Se_3薄膜的电导率为0.9S/cm,seebeck系数为-77.8μV/K。  相似文献   

9.
Bi_2Sr_2Co_2O_y是一种性能优异的层状钴酸盐热电材料,改变材料层与层间错配度可以提高材料的电导率、降低热导率,优化材料的热电性能。本文采用固相反应法合成并制备Bi_2Sr_2Co_2O_y(M=Ca,Ba;x=0,0.05,0.1,0.15,0.2,0.25)样品,通过XRD、SEM等表征样品的物相结构、微观组织。结果表明:Ba和Ca进入晶格,随着Ba和Ca掺杂量的增加,样品的热导率和电阻率与未掺杂的相比明显降低,材料的ZT值显著提升,当掺杂量x=0.2时,Bi_2Sr_2Co_2O_y和Bi_2Sr_2Co_2O_y样品的ZT值最高,在973 K分别达到0.22和0.41,Bi2Sr2Co2Oy热电性能显著改善。  相似文献   

10.
Pseudoternary system (Bi_2Te_3-Sb_2Te_3-Sb_2Se_3) ceramic smeiconductor cooling materials were pre-pared in solid state reaction with conventional techniques ofsintering ceramics.The effect of doping on the properties ofthe material was studied.X-ray diffraction analysis showedthat n-p-type materials were solid solutions based on Bi_2Te_3and Sb_2Te_3 respectively.SEM photographs proved that theboth types of materials were inhomogeneous and layer struc-ture.The values of fingure of merit for n-type and p-typematerials were 3.4×10~(-3) K~(-1),respectively.The fabricatedthermoelectric modlules made of the materials provided excel-lent cooling effect.  相似文献   

11.
采用高能球磨制粉、直流热压成型的方法制备Sn掺杂Bi0.5Sb1.5Te3合金的块材试样(Bi0.5Sb1.5)1-xSnxTe3 (x=0, 0.25%, 0.5%, 1%), 对试样的物相、微观结构和热电性能进行分析。X线衍射图谱表明所有样品的物相均为Bi0.5Sb1.5Te3, Sn掺杂后没有出现第二相。扫描电镜图像表明Sn掺杂对晶粒尺寸的影响不大, 因而晶格热导率变化不大。通过Sn的掺杂, 试样在提高电导率的同时降低了塞贝克系数, 这主要是由于Sn掺杂对载流子浓度的影响。试样Bi0.5Sb1.5Te3的量纲一热电优值ZT在348 K达到1.16, 在423 K之前均大于1, 比传统方法制备的BiSbTe合金的ZT平均值提高了20%, 这有利于热电的实际应用。  相似文献   

12.
Bi_(0.5)Sb_(1.5)Te_3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu content, the electrical conductivity keeps enhancing significantly. The highest electrical conductivity reaches 3341 S/cm at room temperature in Bi_(0.5)Sb_(1.5)Te_3 with 0.67 wt% Cu bulk sample. Moreover, the lowest lattice thermal conductivity reaches 0.32 W/m·K at 572.2 K in Bi_(0.5)Sb_(1.5)Te_3 with 0.67 wt% Cu bulk sample, which is caused by the scattering of the rich-copper particles with different dimensions and massive grain boundaries. According to the results, the ZT values of all Bi_(0.5)Sb_(1.5)Te_3/Cu bulk samples have improved in a high temperature range. In Bi_(0.5)Sb_(1.5)Te_3 with 0.15 wt% Cu bulk sample, the highest ZT value at 573.4 K is 0.81. When the Cu content increases to 0.67 wt%, the highest ZT value reaches 0.85 at 622.2 K. Meanwhile, the microhardness increases with increasing the Cu content.  相似文献   

13.
为了制备高性能的热电材料,采用熔炼和机械粉碎制备成Bi_(0.5)Sb_(1.5)Te_3粉末,再与α-Al_2O_3纳米颗粒通过机械球磨混合,分别在50、100、150、200、230和260℃温度下保持332 MPa压强下热压成型。XRD结果显示,随着热压温度的升高,样品衍射峰变窄、强度升高。从样品的SEM图片可以看出,热压温度的升高导致孔隙变小、变少,片层结构更加明显。在室温条件下测试样品的Seebeck系数、电导率和热导率,结果表明:随着热压温度的升高,三项热电性能均呈上升趋势,得出热压法是制备热电材料的有效方法。  相似文献   

14.
Mg2(Ge, Sn)固溶体是一种环境友好型的中温(500~800 K)热电材料。目前n型Mg2(Ge, Sn)热电材料的ZT值已经高达1.4,但p型Mg2(Ge, Sn)的ZT值仅为0.5。本文在p型Mg1.92Li0.08Ge0.4Sn0.6中添加了少量Si元素以在材料中形成富Si相,利用其与基体的界面过滤低能载流子、降低热导率。采用两步固相反应、球磨和热压的方法制备Mg1.92Li0.08Ge0.4Sn0.6-xSix (x=0, 0.025, 0.05, 0.075, 0.1)样品,通过测试样品的热电输运参数,分析Si添加物对样品热电输运和性能的影响。结果表明:Si添加物能显著提高基体的功率因子,同时有效降低晶格热导率和电子热导率;最终,Mg1.92Li0.08Ge0.4Sn0.525Si0.075的ZT最大值在723 K达到0.75。  相似文献   

15.
采用聚合物造粒的方法,将聚乙烯醇溶液(PVA)和n型Bi2Se0.3Te2.7粉末按一定的配比混合,研究聚合物造粒对Bi2Se0.3Te2.7热电性能的影响。结果表明:造粒后粉体样品的粒径尺寸明显增加,流动性显著提升,其中以PVA与Bi2Se0.3Te2.7质量比1 :10造粒样品的流动性最好;造粒前后,块体样品的电导率、Seebeck系数以及热导率变化范围约在10%以内,总体ZT值变化不大,并且以PVA与Bi2Se0.3Te2.7质量比1 :10造粒样品和Bi2Se0.3Te2.7样品的ZT值在测试范围内几乎相同,均在475 K时达到最大值,约为0.56左右。  相似文献   

16.
在MOFs材料储存氢气过程中,由于材料本身热导率低,导致热量聚集,影响氢气储存性能。为了提高吸附材料的导热性能,且兼顾其储氢能力,利用数值模拟的方法,分析了吸附材料热导率的最佳调控范围。结果表明,当吸附材料热导率为0~1.2 W/(m·K)时,储氢罐的最高温度、平均温度和吸氢量随着热导率的提高得到明显的改善;当吸附材料热导率大于1.2 W/(m·K)时,改善效果明显减弱;当吸附材料热导率大于2.0 W/(m·K)时,改善效果几乎消失。因此,吸附材料的最佳热导率应当控制在1.2 W/(m·K)左右。  相似文献   

17.
采用固相烧结和放电等离子烧结(SPS)法制备CuRh_(2-2x)Mg_(2x)O_4样品,研究不同Mg含量对CuRh_(2-2x)Mg_(2x)O_4热电材料物相组成,晶粒尺寸和热电性能的影响.通过对样品进行XRD,断口形貌SEM,热导率及Seebeck-电阻率进行测试分析,检测结果表明:Mg掺杂后CuRh_(2-2x)Mg_(2x)O_4X射线衍射峰的峰位较CuRh_2O_4标准PDF卡片整体偏移,晶格常数减小;掺杂后的样品晶粒尺寸减小,Mg的掺入使CuRh_2O_4的热导率下降,并且掺杂量越多,热导率越小;Mg掺杂改善了CuRh_2O_4的电学性能,提高了样品的电导率.当Mg掺杂量x=0.25时,试样CuRh_(1.5)Mg_(0.5)O_4的ZT值取得最大值,在900℃下达到了0.182 28.  相似文献   

18.
用固相反应法制备(Ca1-xYx)Mn O3(x分别为0、0.03、0.05、0.07、0.09 mol)热电材料,用自制设备测试样品的热电性能,研究Y3+掺杂对Ca Mn O3热电性能的影响。结果表明:Y3+掺杂可以有效地改善样品的热电性能,其中(Ca0.91Y0.09)Mn O3样品的热电性能较优;当高温端温度为880 K时,测得电阻率为74 mΩ·m,Seebeck系数为-112μV/K,输出功率达到68 m W。  相似文献   

19.
采用熔融缓冷法制备了组成为(AgSbTe2)x(PbTe)1-x(x=0.04—0.20)的热电材料,研究了AgSbTe2固溶量对材料微观结构和热电传输性能的影响。结果表明,当AgSbTe2固溶量增大时,样品易发生相结构偏析,样品由富Pb和富AgSb的两相组成。样品热导率随AgSbTe2固溶量增加而降低,电性能也有一定程度的降低。样品的无量纲热电优值(ZT)随AgSbTe2固溶量的减小而增加。  相似文献   

20.
为改善薄膜热电材料的热电性能,通过磁控溅射制备多层Bi/Te薄膜材料,并用常压高温环境对样品进行快速热退火(RTP),以期在较短时间内获得更高的热电参数.结果表明:Seebeck系数与功率因数最大值与退火温度呈正相关,在400℃退火2~11min,Seebeck系数极大值为-190.41μV/K,功率因数最大值为8.28μW/(K~2·m);随着退火温度的升高,Seebeck系数、载流子浓度、载流子迁移率、电导率和功率因数的振荡幅度也随之加大,并且载流子浓度与Seebeck系数呈反比关系,与电导率呈正比关系,这说明通过改变材料结构和高温快速退火可以得到较高的热电参数,同时保证薄膜的完整性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号