首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
借助有限元分析软件ABAQUS建立含半椭圆表面裂纹有限厚度板有限元模型,根据计算得到的相关节点位移分别采用Chen-Kuang公式、Shih公式和1/4节点位移公式计算半椭圆表面裂纹应力强度因子,考察单元类型和裂尖附近区域网格参数变化对3种位移法计算应力强度因子精度的影响,根据计算结果给出各网格参数的合理范围。结果表明,3种位移法中Chen-Kuang公式计算结果波动最小;二次六面体全积分单元C3D20和二次六面体减缩积分单元C3D20R计算结果一致性良好,减缩积分单元计算结果受网格参数影响较小。文中的方法和结论可用于复杂工程结构中三维裂纹应力强度因子计算。  相似文献   

2.
在裂纹附近区域采用无网格伽辽金(EFG)节点,其余区域采用常规有限单元(FE)节点进行数值离散并求解,获得含裂纹构件的位移场。在裂纹尖端及其附近设置局部辅助有限单元区域,用于求解裂纹尖端处的2个特征参数:裂纹尖端节点力以及靠近裂纹尖端处裂纹面的位移。由这2个参数得到裂纹尖端处的应变能释放率,进而求得相应的应力强度因子,此方法为计算应力强度因子的EFG虚拟裂纹闭合法。数值算例表明,采用EFG虚拟裂纹闭合法能够有效计算裂纹尖端处的应力强度因子。  相似文献   

3.
在裂纹附近区域采用无网格伽辽金(EFG)节点,其余区域采用常规有限单元(FE)节点进行数值离散并求解,获得含裂纹构件的位移场。在裂纹尖端及其附近设置局部辅助有限单元区域,用于求解裂纹尖端处的2个特征参数:裂纹尖端节点力以及靠近裂纹尖端处裂纹面的位移。由这2个参数得到裂纹尖端处的应变能释放率,进而求得相应的应力强度因子,此方法为计算应力强度因子的EFG虚拟裂纹闭合法。数值算例表明,采用EFG虚拟裂纹闭合法能够有效计算裂纹尖端处的应力强度因子。  相似文献   

4.
提出一种计算应力强度因子的单元初始应力法,该法采用退化的1/4节点奇异单元,通过近裂尖最佳应力点应力进行求解,进而求得应力强度因子.采用单元初始应力法对有限尺寸中心穿透裂纹板受远场均布拉力作用下的应力强度因子计算,数值分析得到的解与精确解相比,平面应变模型的相对误差为3.12%,三维模型的相对误差为3.26%.由该法计算的半椭圆表面裂纹板受远场均布拉力作用下的应力强度因子的数值解与手册解相比,最大相对误差为2.28%.单元初始应力法与位移法相比,具有精度高、简捷、高效的特点,可以较为方便且精确地计算三维裂纹尖端的应力强度因子,值得推广.  相似文献   

5.
在常规有限元单元形函数中加入模拟裂纹不连续位移场的跳跃函数,在裂纹尖端构造反映位移场奇异性的裂尖增强函数,采用相互作用积分法求得裂尖应力强度因子.算例结果表明,扩展有限元方法在分析断裂力学问题时具有计算精度高,对有限元网格依赖性小,操作简便等优点.  相似文献   

6.
以100 000立方米浮顶式大型储罐为例,采用基于应力强度干涉模型的一次二阶矩法和基于ANSYS含裂纹平板的可靠性分析方法对大型储罐角焊缝裂纹进行了可靠性分析.首先基于应力强度干涉模型,根据应力强度因子断裂判据,采用一次二阶矩法计算储罐角焊缝裂纹动态扩展的可靠度,计算得到的应力强度因子为354.4 MPa·mm,可靠度为93.32%.然后运用ANSYS软件计算含裂纹平板的可靠度,先是采用1/4节点奇异单元法,计算出裂纹尖端应力强度因子为376.46 MPa·mm,再通过蒙特卡罗法来计算裂纹扩展的可靠性,得到可靠度为82.36%.通过比较两种方法得到的结果,采用ANSYS有限元分析所得的可靠度低于基于应力强度干涉理论计算得到的可靠度.从安全性角度出发,应选择可靠度低的分析结果来提供决策支撑.  相似文献   

7.
广义扩展有限元是广义有限元和扩展有限元两者结合起来形成的一种新的数值方法。介绍了广义扩展有限元的基本原理并推导了相应的公式,提出了将Westergaard裂纹尖端奇异场的基函数作为结点位移插值函数,探讨了数值积分策略,给出了裂纹尖端应力强度因子的计算方法,编写广义扩展有限元程序。通过典型含裂纹平板的计算,表明广义扩展有限元计算应力强度因子精度更高,也不需要划分过密的网格。  相似文献   

8.
平板穿透裂纹尖端应力强度因子计算方法研究   总被引:1,自引:0,他引:1  
针对应力强度因子的求解问题,提出了基于平板穿透裂纹的最大张口位移计算裂纹尖端应力强度因子的新方法.首先根据Westergaard应力函数推导出具有中心穿透裂纹的无限大平板模型受两向均匀拉伸载荷时,裂纹最大张口位移与裂纹尖端应力强度因子之间的数学关系,然后利用有限元模拟计算研究了该数学关系针对含穿透裂纹的有限尺寸平板模型...  相似文献   

9.
一种十分有效的裂纹尖端特殊单元   总被引:1,自引:1,他引:1  
提出了一种可以模拟裂纹尖端附近位移非连续单元,研制了一个边界元分析软件。结果表明,该单元在对于计算应力强度因子十分有效。  相似文献   

10.
采用有限元数值模拟和光弹实验方法分析了各向同性材料共线多裂纹应力场及其强度参量.建立了有限弹性平板内三条共线裂纹计算模型,应用ABAQUS软件的VCCT方法分析计算各向同性材料共线裂纹的裂纹尖端的应力场、应变场分布规律及应力强度因子.并通过光弹实验实测了6061铝板共线裂纹试件的裂纹尖端的应力强度因子.研究结果表明,实验和数值模拟所得的应力云图相似,应力强度因子值基本一致,验证了提出的应力强度因子计算模型的有效性.  相似文献   

11.
首先对EPRI方法建立的裂纹中心板张开位移的工程解进行了实例计算。然后用有限元法对平板中心穿透裂纹张开位移计算得到的有限元解与其进行了比较,得出工程解偏于保守的结论。  相似文献   

12.
利用一种边界元法研究具有偏移边裂纹的三点弯曲-剪切试样.该边界元方法由Crouch与Starfield提出的常位移不连续单元和笔者最近提出的裂尖位移不连续单元构成.在该边界元方法实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其他边界.算例说明这种边界元法不论对无限大还是对有限大平面弹性复杂裂纹问题的应力强度因子的计算都是非常有效的.对具有偏移边裂纹的三点弯曲-剪切试样的应力强度因子进行了详细的研究,给出了数值结果.  相似文献   

13.
A numerical method for multiple cracks in an infinite elastic plate   总被引:1,自引:0,他引:1  
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.  相似文献   

14.
Due to the stress concentration effect around ahole, cracks are likely to initiate at the hole under theaction of fatigue loading. Consequently, a number ofpapers dealing with hole edge crack problems are avail-able. Bowie[1]gave solutions of a circular hole with asingle edge crack and a pair of symmetrical edge cracksin a plate under tension. Newman[2]provided a solu-tion by means of the boundary collocation method, andNisitani and Isida[3]by using the body force methodperformed analysis of …  相似文献   

15.
闫相桥 《哈尔滨工业大学学报》2006,38(8):1224-1227,1313
为研究源于正方形孔的一对分支裂纹问题提出一种边界元法,该边界元方法由Crouch与Starfield提出的常位移不连续单元和裂尖位移不连续单元构成.在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其他边界.算例说明,这种边界元法对计算平面弹性复杂裂纹的应力强度因子非常有效.给出的双向载荷作用下无限大板中源于正方形孔的一对分支裂纹的应力强度因子的详细数值结果,可以揭示双向载荷参数对应力强度因子的影响.  相似文献   

16.
在美国材料试验协会标准ASTM C1550圆板试验方法基础上,提出一种改进的基于裂缝宽度量测技术的纤维混凝土(FRC)材料静定圆板试验方法。该试验方法采用易于现场制作和试验的小尺寸圆板,并运用加载过程中板的径向滑移和转动角度量测技术,通过合理假定和数学推导得到板底中心裂缝宽度值,获得更多板在裂后阶段大变形下有关裂缝开展的实测数据,从而有效地评定纤维混凝土材料的弯曲韧性、延性等材料性能。同时应用有限元方法,分析试验圆板的裂缝开展特点及破坏形态,对比试验研究结果,验证该试验方法为获得裂缝宽度值所做的合理假定,为建立FRC静定圆板的理论计算方法提供依据。  相似文献   

17.
基于弹性力学平面应力理论,利用Chebyshev-Ritz法分析多裂纹梁的自振特性. 根据裂纹情况将裂纹梁分成若干个梁段,用边界函数与第一类Chebyshev多项式的乘积构造各梁段的位移函数,具有很好的收敛性,能够适用于不同的几何边界条件. 用Ritz法得到各梁段的振动方程,根据各梁段之间的位移连续条件整合方程,建立整个裂纹梁的振动特征方程. 计算结果与有限元分析和相关文献数据吻合很好. 分析裂纹深度和位置对自振特性的影响. 随着裂纹深度的增大,裂纹梁的频率减小,振型的幅值变大,且影响的程度会受裂纹的位置影响.  相似文献   

18.
为模拟固体火箭发动机的轴向冲击响应,给固体火箭发动机的设计提供一定依据,在模态分析的基础上,利用基于位移法的有限元方法对轴向冲击响应进行分析.计算得到位移、应力及应变等的结果与试验结果基本吻合.由此得到结论:基于位移法的有限元方法适用于进行固体火箭发动机的轴向冲击响应分析计算,能够为固体火箭发动机的设计提供参考依据.  相似文献   

19.
将有限条带法 (FSM)中两端固定条和有限单元法 (FEM)中矩形单元的位移函数相迭加 ,运用混合条元法来求解平面弹性力学问题 .结果表明 ,该种混合条元能有效地减小计算工作量 ,具有适用性强、收敛性好等特点 .  相似文献   

20.
目的 研究有限元法在空间砌体结构分析中应用的可行性。并提出模拟砌体带裂缝损伤状态的有限元建模及分析方法.方法 进行砌体结构模型拟静力试验及脉动测试.并采用等效体积单元法对空间砌体结构模型进行有限元分析.在对有限元模型的优化更新研究中,以损伤状态下的识别刚度作为目标函数。根据结构位移、抗侧移刚度及外荷载三者的内在关系,通过调整弹性模量优化有限元模型来模拟砌体带裂缝工作状态,并对比拟静力试验及动态测试识别结果进行理论分析.结果 利用所提出的有限元建模及分析方法很好地模拟了砌体结构完好及带裂缝损伤状态下的工作特性.有限元模型计算分析结果与实测值具有良好的一致性.结论 采用等效体积单元(RVE)可以准确模拟空间砌体结构的材料特性.利用动态测试数据结合反演理论进行结构模型的优化更新方法可有效模拟砌体结构的带裂缝工作状态,并有效地考虑砌体材料的离散性问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号