首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对低压下铜化学机械抛光(CMP)碱性抛光液的性能进行了研究.在分析碱性抛光液作用机理的基础上,对铜移除速率、表面粗糙度等性能进行了考察.结果表明:加入络合剂R(NH2)m(OH)n实现铜在碱性抛光液中的溶解,同时提高了的铜移除速率(41.34kPa:1050nm/min; 6.89kPa:440nm/min)并降低了表...  相似文献   

2.
对ULSI制备中铜布线化学机械抛光(CMP)进行了分析,综述了铜CMP技术的研究现状.主要内容包括铜CMP去除机理、铜CMP抛光液;分析了目前铜CMP技术存在的问题,指出了铜CMP今后的研究重点.  相似文献   

3.
随着超大规模集成电路向高集成、高可靠性及低成本的方向发展,对集成电路制作过程中的全局平坦化提出了更高的要求.ULSI多层布线CMP中粗糙度对器件的性能有明显影响,因此本文主要研究多层互连钨插塞材料CMP过程中的表面粗糙度影响因素及控制技术,分析了抛光过程中影响粗糙度的主要因素,确定了获得较低表面粗糙度的抛光液配比及抛光...  相似文献   

4.
化学机械抛光(CMP)是固体物质表面超精密加工最重要的方法之一,温度是影响CMP过程中化学反应快慢及材料去除速率的重要因素之一.本文重点研究了蓝宝石衬底CMP过程中抛光前期温度上升时间对最终抛光效果的影响,并采用原子力显微镜观察表面粗糙度,通过测厚仪测量去除厚度.实验结果表明,通过小流量快启动方式,减少温度上升时间,可以有效提高抛光去除速率,改善去除速率均匀性.在工作压力为0.1 MPa时,抛光开始15 min后使温度提升到35℃,抛光速率为4.07 m/h,片内速率非均匀性为4.73%,粗糙度为0.174 nm.  相似文献   

5.
铜抛光液的电化学行为研究   总被引:1,自引:0,他引:1  
为分析用于超大规模集成电路(ULSI)中铜化学机械抛光(CMP)所使用抛光液的添加剂对铜硅片的氧化、溶解和腐蚀抑制行为,以双氧水为氧化剂,柠檬酸为络合剂,苯丙三唑(BTA)为腐蚀抑制剂,在pH5的条件下进行抛光液的电化学行为研究.测试了铜在抛光液中的极化曲线、交流阻抗谱以及静腐蚀量.试验结果表明:添加络合剂柠檬酸降低了原来处于钝化状态下的铜抛光液系统的阻抗;加入缓蚀剂BTA后,Cu-H2O2-Citric acid-BTA系统的交流阻抗值增大.测试到的Cu-H2O2-Citric acid系统由于存在铜的不可逆氧化过程,导致了Warburg阻抗的存在;添加BTA后,在铜的表面生成了CuBTA的缓蚀膜,抑制了铜的腐蚀并改变了铜在Cu-H2O2-Citric acid系统中的电化学反应过程.  相似文献   

6.
“超大规模集成电路多层铜布线用化学机械全局平面化抛光液”项目荣获专利金奖在2005年度天津市专利金奖的评选中,由河北工业大学刘玉岭教授等研发的“超大规模集成电路多层铜布线用化学机械全局平面化抛光液”项目荣获专利金奖,得到了天津市人民政府的表彰;同时,该项目还荣获第九届中国专利优秀奖,受到了国家知识产权局的表彰.(学摘)河北工业大学与国内外著名大学开展合作2006年3月30日,英国剑桥大学,清华大学,河北工业大学等“中国高校教师英语培训项目合作洽谈会”在河北工业大学召开.这次会议标志着河北工业大学作为省内首家院校与清华…  相似文献   

7.
苯并三唑对铜/磷酸体系电化学腐蚀抑制作用   总被引:1,自引:0,他引:1  
为确定苯并三唑(BTA)在铜的电解抛光液中的腐蚀抑制作用,研究铜在30% (质量分数)H3PO4+0.01 mol/L BTA抛光液中的电化学行为,测试铜在该抛光液中的极化曲线以及静态腐蚀量.应用原子力显微镜和能谱分析,观测不同阳极电势下静态腐蚀后的铜表面形貌并分析CuBTA膜的形成过程.结果表明,一定阳极电势范围下铜先行溶解,表面粗糙度加大,之后铜离子吸附BTA分子在表面逐渐形成CuBTA覆盖层,铜的溶解速度受到抑制,表面粗糙度稳定于一较低值.为保证CuBTA膜的形成,铜片所加的静态阳极电势应在0.5 V以下,本实验条件下形成稳定的CuBTA膜需要2 min.  相似文献   

8.
磁盘表面质量直接影响了硬盘的磁存储密度,表面须达到优异的表面光滑度、没有表面缺陷.本文通过对镍磷基板的化学性质分析,讨论了其CMP机理,分析了浆料中的磨料在硬盘基板CMP中的重要性,指出浆料中的磨料不仅起到了机械研磨的作用,同时也充当了微型搅拌器的作用;通过实验分析了碱性浆料下磨料的浓度和粒径对镍磷基板CMP去除速率与表面粗糙度的影响;选用小粒径、低硬度的二氧化硅水溶胶磨料实现了较高的去除速率和较低的表面粗糙度.  相似文献   

9.
2004年12月10日,天津市科委组织并召开了“微晶、石英、光学、电子玻璃纳米磨料CMP技术的研究”项目成果鉴定会.该项目针对微晶、石英、光学、电子玻璃化学机械全局平坦化(CMP)中亟待解决的机理、技术和抛光液等问题,在大量实验的基础上,确立了微晶、石英、光学、电子玻璃的CMP机理模型;采用改进型1号液为微晶、石英、光学、电子玻璃代替了目前广泛使用的对人体有害、易造成污染的丙酮、重铬酸钾和浓硫酸洗液;加入FA/O表面活性剂,加快表面质量传递,保证在凸起处与凹陷处抛光速率选择性好,从而保证了平整度,有效降低了表面粗糙度且便于清洗;  相似文献   

10.
为了在ZnS光学晶体表面制备超光滑牺牲层,用于离子束沉积修正刻蚀抛光ZnS光学晶体表面,引入一种简单平坦化工艺.工艺实验所用的平坦化胶为苯并环丁烯树脂(BCB).研究了涂胶转速、胶的浓度及热烘温度对牺牲层表面粗糙度的影响,优化了平坦化工艺参数,并讨论了各因素对牺牲层表面粗糙度的影响趋势.采用自旋涂胶的方法制备平坦化牺牲层,研究结果表明:对于BCB-1500胶,可在ZnS晶体表面获得粗糙度低于1.4nm的牺牲层;对于BCB-700胶,可获得粗糙度低于1.2nm的牺牲层,两者均可用于离子束刻蚀抛光ZnS表面的牺牲层.  相似文献   

11.
Copper electrolyte was purified by copper arsenite that was prepared with AS2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m^2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m^2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).  相似文献   

12.
Techniques of copper recovery from Mexican copper oxide ore   总被引:1,自引:0,他引:1  
Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the tailings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃ with a mixing speed of 500 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/mS) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching-solvent extraction-electro-winning.  相似文献   

13.
Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).  相似文献   

14.
采用“稀硫酸浸出-Lix984萃取富集提纯-电积沉铜”的湿法冶铜工艺,对铜矿选矿尾砂中铜的回收进行了试验研究.讨论了加酸浸出方式、酸用量、浸出时间、浸出温度、熟化时间、NaCl的加入量等因素对铜浸出效果的影响,在试验范围内,得出了最优的浸出参数:每100 g尾砂加入1 g NaCl,用30 mL10%硫酸将尾砂搅拌均匀,然后常温熟化15 h,再以3∶1的液固质量比添加水后常温搅拌浸出9 h.浸出率Cu 79.88%,Fe 0.32%;浸出液用10%Lix984萃取后再用2.5 mol/L硫酸反萃,富集提纯后的硫酸铜溶液经过电解,得到金属铜产品,其Cu含量为99.95%,达到GB/T467的要求.  相似文献   

15.
从铜矿尾砂中回收铜的工艺研究   总被引:2,自引:0,他引:2  
采用"稀硫酸浸出-Lix984萃取富集提纯-电积沉铜"的湿法冶铜工艺,对铜矿选矿尾砂中铜的回收进行了试验研究.讨论了加酸浸出方式、酸用量、浸出时间、浸出温度、熟化时间、NaCl的加入量等因素对铜浸出效果的影响,在试验范围内,得出了最优的浸出参数:每100 g尾砂加入1 g NaCl,用30 mL10%硫酸将尾砂搅拌均匀,然后常温熟化15 h,再以3:1的液固质量比添加水后常温搅拌浸出9 h.浸出率Cu 79.88%, Fe 0.32%;浸出液用10%Lix984萃取后再用2.5 mol/L硫酸反萃,富集提纯后的硫酸铜溶液经过电解,得到金属铜产品,其Cu含量为99.95%,达到GB/T467的要求.  相似文献   

16.
In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However,the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34% is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, Ca Cl2 addition amount of 0.1(mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.  相似文献   

17.
铜表面气体渗硅后的滑动摩擦磨损研究   总被引:3,自引:0,他引:3  
本文对用硅烷-氢(SiH4/H2)混合气体在铜表面进行化学热处理获得的含硅表层进行了摩擦磨损研究.结果表明,在铜表面生成的含硅层可以降低摩擦系数;在低负荷干摩擦条件下,含硅表层的磨损率有较大程度的改善  相似文献   

18.
The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffluent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.  相似文献   

19.
渗滤法在氧化铜矿溶铜工艺的应用   总被引:1,自引:0,他引:1  
渗滤溶矿技术应用于氧化铜矿湿法提铜工艺,具有工艺简单,易于操作,设备投资少,能耗低,生产成本低等特点,是湿法提铜工艺中并不多见的方法,本文介绍了氧化铜矿酸溶工艺中渗滤溶解技术的应用研究。  相似文献   

20.
叶绿素铜钠盐的制备   总被引:19,自引:0,他引:19  
用正交法考察了温度、NaOH用量、溶剂A的溶剂B的体积比,以及溶剂总体积和糊状叶绿素重量比四因素对叶绿素铜酸制备过程中的皂化工序的影响;对铜代过程中硫酸铜用量和铜代条件进行试验;探索了酸化结晶工序的工艺条件;采用了反萃结晶法精制叶绿素铜酸;测定了叶绿素铜酸在溶剂中的溶解度;研究了反萃结晶过程的工艺条件;考察了蒸发干燥过程中温度和时间的影响。在对叶绿素铜钠盐制备过程的总结和分析的基础上,提出了优化的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号