首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
The pore structures of two activated carbons from sawdust with KOH activation and coconut-shell with steam activation for supercapacitor were analyzed by N2 adsorption method. The electrochemical properties of both activated carbons in 6 mol/L KOH solution and 1 mol/L EtgNPF4/PC were compared, and the effect of pore structure on the capacitance was investigated by cyclic voltammetry, AC impedance and charge-discharge measurements. The results indicate that the capacitance mainly depends on effective surface area, but the power property mainly depends on mesoporosity. At low specific current (1 A/g), the maximum specific Capacitances of 276.3 F/g in aqueous system and 123.9 F/g in nonaqueous system can be obtained from sawdust activated carbon with a larger surface area of 1 808 m^2/g, butat a high specific current, the specific capacitance of coconut-shell activated carbon with a higher mesoporosity of 75.1% is more excellent. Activated carbon by KOH activation is fitter for aqueous system and that by steam activation is fitter for nonaqueous system.  相似文献   

2.
The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.  相似文献   

3.
Diatomite was used as raw material to prepare sodium silicate with a modulus of 3.1 by alkalidissolution method and the resulted sodium silicate solution was employed as a precursor. Methyl methacrylate monomers were introduced in wet gels through solution-immersion, and upon heating at 70 ℃, the mesoporous surfaces throughout the skeletal framework were coated with the polymer layer. PMMA modified silica aerogels were successfully synthesized via ambient pressure drying. The properties were investigated by FTIR, NMR, TGA, nitrogen adsorption-desorption, FESEM and nano-indentation, etc. Results indicate that with the increasing of PMMA incorporated into silica aerogels, the bulk density and the BET surface area increase, the porosity decreases. Through the observation of FESEM, it is found that the interconnecting pores and the big pores add, the pore size distribution expands from 5-17 to 28-150 nm. By comparison, the PMMA modified silica aerogels achieve a 52-fold increase in hardness and a 10-fold increase in modulus.  相似文献   

4.
The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface areas and the pore structures of activated carbons were analyzed by nitrogen adsorption, and the electrochemical properties of the activated carbons were studied using two-electrode capacitors in organic electrolyte. The results indicate that the maximum surface area of 3 190 m2/g is obtained at molar ratio of KOH to C of 5:1, the maximum specific capacitance of 122 F/g is attained at molar ratio of KOH to C of 4:1, and 800 ℃ is the proper temperature to obtain the maximum surface area and capacitance.  相似文献   

5.
Low-cost preparation of mesoporous silica with high pore volume   总被引:1,自引:0,他引:1  
Mesoporous silica materials with high pore volume were successfully prepared by the chemical precipitation method, with water glass and a biodegradable nonionic surfactant polyethylene glycol (PEG). The obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analyzer and differential scanning calorimetry (TG-DSC), nitrogen adsorption-desorption measurements, and X-ray diffraction (XRD). The results showed that the changes of the pore parameters depended on both the surfactant content and heat treatment temperature. When the content of PEG was 10wt% and the obtained PEG/SiO2 composite was heated at 600℃, the mesoporous silica with a pore volume of 2.2 cma/g, a BET specific surface area of 361.55 m^2/g, and a diameter of 2-4 μm could be obtained. The obtained mesoporous silica materials have potential applications in the fields of paint and plastic, as thickening, reinforcing, and flatting agents.  相似文献   

6.
Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized by scanning electron microscopy (SEM) and the structural properties were determined by N2 adsorption at 77 K. The results show that ACAs have a typical three-dimensional nanonetwork structure composing of cross-linking of carbon nanoparticles. The specific surface area and the total pore volume remarkably increase with increasing activation time while the previous porous structure still remains. The specific capacitance of the 950-10-ACA electrode can reach up to 212.3 F/g in 6 mol/L KOH electrolyte. The results of constant-current charge-discharge testing indicate that the ACAs electrodes present fast charge- discharge rate and long cycle life (about 98% capacitance retained after 3000 charge-discharge cycles at 1.25 mA/cm2). Lower internal resistances can be achieved for 950-10-ACA electrode in KOH electrolyte. Our investigations are very important to improve the wettability and electrochemical performance of electrode for supercapacitors.  相似文献   

7.
A new sol-gel process for the preparation of ultrafine nickel hydroxide electrode materials was developed. The composite electrodes consisting of carbon nanotubes and Ni(OH)2 were developed by mixing the hydroxide and carbon nanotubes together in different mass ratios. In order to enhance energy density, a combined type pseudocapacitor/electric double layer capacitor was considered and its electrochemical properties were characterized by cyclic voltammetry and dc charge/discharge test. The combined capacitor shows excellent capacitor behavior with an operating voltage up to 1.6 V in KOH aqueous electrolyte. Stable charge/discharge behaviors were observed with much higher specific capacitance values of 24 F/g compared with that of EDLC (12 F/g) by introducing 60% Ni(OH)2 in the anode material. By using the modified anode of a Ni(OH)E/Carbon nanotubes composite electrode, the specific capacitance of the cell was less sensitive to discharge current density compared with that of the capacitor employing pure nickel hydroxide as anode. The combined capacitor in this study exhibits high energy density and stable power characteristics.  相似文献   

8.
Mesoporous materials with the highest surface area were synthesized by hydrothermal treatment from coal-measure kaolin using cetyltrimethylammonium bromide(CTAB)as template.The effect of several factors on surface area of products also had been discussed.The products were characterized by FT- IR,HRTEM and N 2 adsorption and desorption isotherm plot methods.There was typical structure as Si-O,Si- OH and Si-O-Si of mesoporous materials in the framework of synthesized materials;the pore size distributions of the products showed a sharp peak at 3.82 nm.The effect of hydrothermal treatment time and the amount of template on the specific surface area of mesoporous materials was important,when the Surf/Si=0.135,and hydrothermal time=12 h,and the surface area of the product reached up to 1 070 m2/g,which was higher than other products.  相似文献   

9.
Ordered mesoporous ceria and ceria-zirconia with high specific surface area were prepared by nanocasting of a mesoporous silica KIT-6 template and used for soot oxidation.The as-synthesized ordered mesoporous ceria and ceria-zirconia were characterized by XRD,TEM,Nitrogen adsorption-desorption,Raman spectroscopy,and XRF.The results indicate that mesoporous ceria and ceria-zirconia possess highly ordered mesoporous structure,and exhibited excellent catalytic performance in soot oxidation.T_(50) of mesoporous ceria and ceria-zirconia are 475 and 470 ℃,respectively.The high catalytic activity of mesoporous materials can be attributed to the mesoporous structure and small crystallite size.Moreover,aged mesoporous materials exhibit high catalytic activity.  相似文献   

10.
An effective and reproducible preparation of silica sol nanospheres via a modified sol-gel process has been described. Monodisperse and stable silica sol nanospheres with uniformsize were successfully obtained through the optimized synthesis in which the mixture of tetraethyl orthosilicate (TEOS) and ethanol was followed by the addition of water and ammonium hydroxide (NH3) separately, and the size of silica sol spheres was strictly controlled in the range of 25-119 nm with a narrow size distribution by fine adjustment of several reaction parameters. Results showed that in the presence of low concentration of TEOS, spheres size rose first and reached maximum when H2O concentration was up to 66 g/L. However, the diameter of silica sol spheres decreased above 66 g/L of H2O concentration. Furthermore, it was also found that the size and size distribution of silica sol nanospheres were affected by NH3 concentration. As NH3 concentration increased from 15 to 35 g/L, the diameter declined from 83 to 64 nm. Nevertheless, higher NH3 concentration would result in relatively broad size distribution, and gelation occurred when NH3 concentration reached 44 g/L. In addition, the effect of the different feed rates ofNH3 on the size growth of silica sol nanospheres was also discussed.  相似文献   

11.
A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer, respectively. The blends were carbonized at 800 °C in nitrogen. SEM, BET measurement and BJH method reveal that the obtained carbon possesses a mesoporous characteristic, with the average pore size between 3.0 nm and 5.0 nm. The electrochemical properties of supercapacitor using these carbons as electrode material were investigated by cyclic voltammetry and constant current charge-discharge. The results indicate that the composition of blended polymers has a strong effect on the specific capacitance. When the mass ratio of PF to gelatin is kept at 1:1, the largest surface area of 222 m2/g is obtained, and the specific capacitance reaches 161 F/g.  相似文献   

12.
Using lignite-based hypercoal as raw material,KOH as activator and CuO as microwave absorber,we prepared hypercoal-based activated carbons by microwave-assisted activation.The pore structure and the electrochemical performance of the activated carbons were tested,and the effects of adding CuO in the activation reaction process were also investigated.The activated carbons prepared were characterized by nitrogen adsorption-desorption,X-ray diffraction (XRD) and scanning electron microscopy (SEM).The specific surface area and mesoporous ratio of the hypercoal-based activated carbon are 1 257 m~2/g and 55.4%,respectively.When the activated carbons are used as the electrode materials,the specific capacitance reaches 309 F/g in 3 M KOH electrolyte.In comparison with those prepared without CuO absorber,the specific capacitance increases by 11.6%.It was proved that the addition of microwave absorber in microwave-assisted activation was a low-cost method for rapidly preparing activated carbon,and it could effectively promote the development of the pore structure and improve its electrochemical performance.  相似文献   

13.
利用模板炭化法,以不同温度下合成的SBA-15为模板,制备3种具有不同孔径大小的介孔碳.研究并比较3种不同孔径的介孔碳材料对铬Cr(Ⅵ)的吸附能力.结果表明,介孔碳的投入量、pH值、振荡时间因素等均对铬Cr(Ⅵ)的吸附效果存在一定影响.研究显示:在3个介孔碳中,CMK-3-150对铬的吸附能力最大,可以达到99.2%;当pH=2.0—4.0时,介孔碳对Cr(Ⅵ)的吸附最有利,3个介孔碳吸附能力都超过90%;吸附量随着振荡时间的延长而增加.同时对介孔碳CMK-3-100与传统商用活性碳CAC对Cr(Ⅵ)的吸附性能进行比较,结果表明:与CAC相比,CMK-3吸附量大,吸附速率快,到达平衡时间短,是一种较优的吸附剂.  相似文献   

14.
1 INTRODUCTIONSupercapacitor is a kind of newenergy storagedevice , which can fill the gap between the conven-tional capacitor and the battery[1 ,2]. Supercapa-ciors are nowutilizedin many fields ,such as spaceindustry ,national defense ,warindustry ,electricalvehicle , wireless communication, and consume e-lectronics .It is well known that the electrode ma-terial is the key factor to determine the perform-ance of supercapacitor . At present ,the activatedcarbonis the main marketed availa…  相似文献   

15.
Magnetic Fe-containing ordered mesoporous carbons (Fe/OMCs) with high surface areas and pore volume were synthesized through a simple soft-template route, wherein phenolic resin was used as a carbon precursor, triblock copolymer F127 as a template agent, tetraethyl orthosilicate (TEOS) as a silica precursor and hydrated iron nitrate as an iron source. The effects of carbonization temperature, loading degree of TEOS on the structural parameters of these Fe/OMCs were evaluated by X-ray diffraction (XRD) and N2 sorption analysis. The ordering, the specific surface area and the total pore volumes increased with the increase of carbonization temperature from 600 to 850 °C. And the specific surface area and the total pore volumes increased with the increase of TEOS loading.  相似文献   

16.
采用微湿含浸-溶剂热法制备了高比表面积和高比电容的氧化钴/有序中孔炭超级电容器复合材料.采用液氮吸附脱附等温线和X线衍射,以及透射电镜表征了复合材料的孔结构,在6 mol/L 氢氧化钾电解液中测试了其电化学性能.测试结果表明:在5 mV/s充放电扫描速率下,复合材料的比电容达到1079.6 F/g,并且具有良好的循环寿命,显示了优异的电化学性能.  相似文献   

17.
采用"原位合成模板法"以硅酸为模板、硝酸钴为钴源,制备了中孔Co3O4材料,研究了模板和硝酸钴的质量比对所制得的中孔Co3O4材料的微观结构和电化学性能的影响.用N2等温吸附—脱附和X线衍射测试了其微观结构.结果表明,随着模板质量比的增加,制备得到的Co3O4材料的比表面积增加,中孔结构越明显,结晶性逐渐降低.在6 mol/L氢氧化钾电解液中测试了其电化学性能,最优质量比制得的样品在5 mV/s扫描速率下的比电容达329 F/g.即使在较高扫描速率下,该质量比的中孔Co3O4比电容依然具有很好的保持性.  相似文献   

18.
介孔碳是一类新型的非硅基介孔材料,孔径一般在2~50 nm,其具有较高的孔比表面积、可调的孔道结构、良好的导电和导热性能等一系列优点,因此在吸附、催化、储氢及电化学等众多领域有着广泛的应用前景。综述了目前介孔碳材料的各类合成方法,重点介绍了模板法,其中包括硬模板法和软模板法,并对模板法的进一步研究进行了展望。  相似文献   

19.
采用模板法合成2种孔径不同的介孔碳分子筛CMK-3和CMK-1,介孔碳分别负载难溶性药物布洛芬.对负载药物布洛芬的介孔碳分子筛利用X射线衍射(XRD)、氮气吸附-脱附分析、扫描电镜分析(SEM)、透射电镜分析(TEM)、IR等表征手段分析,结果表明药物分子确实存在于分子筛孔道中.同时研究分子筛对布洛芬的缓释作用,比较孔道大小对药物缓释性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号